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ABSTRACT

Sparse coding is a new field in signal processing with possible
applications to source coding. In this paper we present a new
method that combines the problems of sparse signal approxi-
mation with coefficient quantization. This method uses over-
complete dictionaries and exploits signal redundancy. The
proposed method will be derived as an extension of a recently
presented method (iterative thresholding) to find sparse repre-
sentations of signals. Because in digital communication and
storage we need a quantized representation of the signal, in-
stead of quantization of sparse representations a posteriori,
we propose a refined method that combines sparse approxi-
mation and quantization. To compare the proposed method to
a posteriori quantization, we present an audio example.

Index Terms – Sparse approximation, Quantization, Iterative
Thresholding, Audio coding, Signal representation

1. INTRODUCTION

Sparse approximations represent signals with a small num-
ber of elementary functions (atoms) from an overcomplete
set of functions (dictionary). This kind of signal represen-
tation has various applications such as source separation, de-
noising, feature extraction, compression and source coding.
The focus of this paper is to simultaneously obtain a sparse
and quantized representation of a signal. As an example, we
use an audio signal to show the performance of the algorithm.
Sparse representations are potentially useful in source coding
because the encoder only needs to encode non-zero coeffi-
cients and their indices (i.e. the indices of the atoms in the
dictionary) to enable the decoder to reconstruct the original
signal.

Most modern audio codecs use a transformation of the in-
put as the first step to get a sparser representation of the signal
and, with some psychoacoustic considerations, quantize and
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encode the coefficients. The decoder uses the inverse trans-
form [1]. The idea behind transform coding is that a simlpe
scalar quantizer can be used. Therefore, many researchers use
sparse representations based on overcomplete dictionaries to
increase the sparsity of the representation (with an increase in
the cost of index coding)[2] [3] [4].

Previous approaches mostly use greedy algorithms like
Matching Pursuit (MP) or its extension, Quantized MP (QMP)
[5], which was shown to improve quantized SNR by 0.5–
2 dBs for a fixed bit rate [6]. In this paper we propose a
different in-loop quantization method and show that it uses
the redundancy in the dictionary to find a better quantized
approximation. The contribution of this paper is an iterative
algorithm that jointly optimizes the selection of atoms from
a redundant dictionary and the quantization. A new penalty
function will be presented to replace the traditional penalty
function based solely on the number of none-zero coefficients.
To optimize this penalty function we need either relaxation or
approximation. In this work the latter one is chosen.

2. SPARSE APPROXIMATION AND ITERATIVE
THRESHOLDING

An optimal source code can be achieved by Vector Quantiza-
tion (VQ) [7] which is computationally expensive. Transform
coding is used to get suboptimal source codes with simpler al-
gorithms. In standard transform coding, coefficients are quan-
tized with a scaler quantizer and then entropy coded [8]. Lin-
ear transforms do not always lead to good performance. One
solution is to represent the signals using a nonlinear trans-
form and an overcomplete set of elementary functions. Non-
linear transforms can lead to sparser representations for cod-
ing. Overcomplete signal representations can be formulated
as, ��������� (1)

where � is an 	 by 
 matrix with 
��
	 and � � � � 	 .� and � are the input signal and the signal in the transform
domain. Because � is a non-square matrix with 
 ��	 ,
we have an infinite number of solutions � for every input � .
We can choose a particular solution based on the constrained



optimization of the desired penalty function ��� ��� ,�������� ����� � ��� ��� (2)

For sparse representations, ��� ��� is often chosen to be !#" ,
which measures the number of non-zero coefficients. Instead
of solving this exact representation problem, we use an ad-
ditive cost function of a squared error approximation and the
penalty,���$��&% � �'�)( % � �'�*� �$� �+��,-� �$� .0/213��� �'� (3)

where �$�54���� is the norm in signal space and 1 a Lagrangian
multiplier. In general, solving the above optimization prob-
lem based on the ! " sparsity constraint is an NP-hard problem
and is not computable in an acceptable amount of time. So
the problem needs to be sinplified using relaxation or approx-
imation [9]

Recently Daubechies et al. [10] have presented an Iter-
ative Thresholding algorithm (IT), as an iterated version of
classical thresholding [11] to find sparse approximations for a
broader ranges of dictionaries (the classical one was presented
for orthogonal wavelets and could be extended to other or-
thogonal bases). The algorithm was shown to solve a relaxed
version of the ! " problem (with a convex penalty function).
The penalty function in [10] is,��� �'�6� � � � 77 (4)

where � � � 7 is the p-norm with 8:9<;=9?> to ensure convexity of��� �'� .
The matrix � couples the coefficients and prevents us

from optimizing the cost function element-wise. This cou-
pling can be removed by adding a convex function to the cost
function, to get a ”surrogate function”. We can then opti-
mize the new cost function (this process is called optimization
transfer),%A@ � ���B�3CD�6� % � ��� /E�$� �F,G��C �$� . , �$� ���H,I�+�3C �$� . (5)

When �J�K� C , the surrogate function is equal to the original
cost function. Rewriting (5) yields,

% @ � ���L� C �M� NPORQ � � O ,-S O � . /�1<� � O � 7�T / Q UV,IS .O TXW (6)

where SY� �[Z ,\�I]��-�^� C / �I]_� , U`� ��� � ��� . /a��� � C �$� . ,��� �+� C �$� . , b shows the element number and � ] is the conju-
gate transpose of � . S is a function of � also known as a
Landweber update of � [12], which could be used iteratively
to compute the ! . regularized optimal solution of the inverse
problem. The second term is constant and we only need to
optimize the first sum, which is now decoupled and can be
minimized elementwise. In an iterative scheme we set the
previous computed value, �'cedgf , to � C and then set ��c to the
value � that optimizes%A@ � � c �L� c5dhf � b �6� � � cO ,-S cedgfO � .i/j1=� � cO � 7 (7)

where S<cedhf is the Landweber update of �'cedhf . The conver-
gence of this algorithm to a minimum of (3), for certain cost
functions, is shown in [10]. In each step we find the best
value for ��cO based on � cedhfO

(or its corresponding Landweber
update). Therefore the iterative algorithm for 
 iterations is
as follows:

1. k � 8 , � " �ml ,
2. S<cedhf � �nZ ,-�I]_�G�o�3cedgf / �-]�� ,
3. �3cO �Ep � S cedhfO �_(oq b
4. k � kr/�8 if kG9�
 return to step 2.

In step 3, p is the element-wise optimizer. When ; � 8 and; ��l this function is soft- and hard- thresholding [11], re-
spectively.

The IT algorithm is flexible and it is possible to change
the penalty function (albeit under certain conditions). In this
paper we propose a Quantized IT algorithm based on certain
modifications of the cost function, such that we simultane-
ously get a quantized signal representation.

3. QUANTIZED SPARSE APPROXIMATION

In this section we are considering the problem of quantized
sparse representations. For coding, coefficients need to be
quantized. Therefore the transform is changed to get quan-
tized coefficients to reduce quantization error. The quantized
version of (3) is:

%ts �[u �6� ��� � u ,-� ��� .0/2� s �nu � (8)� s �[u �-� 1=�$� u��$� " measures the number of non-zero coeffi-
cients and u is a quantized value vector with the desired uni-
form quantizer, with larger zero bin ( v " and v f are the zero
and non-zero bin sizes). Optimizing the above cost function
is an NP-hard problem. But with iterative thresholding in the
quantized domain we could decrease this cost function pro-
gressively. After adding quantized version of the previously
mentioned convex function, the following surrogate function
should be minimized in each step:

% @ �[u c � u cedgf � b �6� �nu cO ,IS cedhfO � . /j1=� u O � " (9)

Here � u O � " is equal to zero if u O �wl and equal to one oth-
erwise. We are looking for the optimum value of % @ in the
quantized value domain. For different u cO , % @ is

%A@ �nu c � u cedgf � b �:�yx � S cedhfO � . u cO �mz " �rl� S cedhfO ,-z|{}� . /21 u cO �\z|{ � {M~� "
(10)

where z�{ is the �e�n� quantization level ( �F��� ��,r�n�t� >��</j8�9�-9 �n�t� >�� for a � level quantizer). To define the neighbor-
hood of each z { in which the optimum value of % @ (for the
quantized value u cO ) is z { , we just need to compare it with % @
at adjacent quantization point(s) ( z { dhf and z {_� f ). This leads
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to a function on S that is a quantizer with the same quantiza-
tion levels as the original quantization levels and an adjustable
zero bin. We can choose an appropriate 1 , by using equation
(11), to ensure that the quantizer is uniform in non-zero bins
and has a larger zero-bin size, see Figure 1.1 � �nv " � > � . , �nv f � > � . (11)

Therefore the shrinking function changes to a simple uniform
quantizer, p � S��*�m� � S�� (12)

With different initial values, the algorithm will converge
to different fixed points. Increasing the number of quanti-
zation levels directly increase the number of local minima.
To improve performance, we adopt a relaxation strategy for
iterative shrinkage previously presented in [13]. Instead of
updating the current coefficients with the proposed threshold,
we choose a relaxation factor � and update the current coeffi-
cients as � cO � �L8 , � �o� cedgfO /J� p � S cedhfO �_� (13)

where lr� �J9�8 . With this update, � O is not quantized. But
it is obvious that the fix points of (12) and (13) are the same.
After the algorithm converges, all � O s have quantized values.
When �$� � ���'�a8 , for some initial values, updating by (12) is
unstable. But with the use of this relaxation, and choosing ap-
propriate � , our simulations show stability for both methods
(IT and QIT). The overall process is the same as IT but with
step 3 replaced by (13).

4. SIMULATIONS

A segment of pop music sampled at �:> kHz was chosen here
as a test signal (Figure 2). A 4 times overcomplete MDCT
dictionary (overcomplete in the frequency domain) was used.
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Fig. 2. Input audio signal

All simulations were started with � " �\l . We fixed quantiza-
tion levels and used a uniform dead-zone quantizer with the
following zero bin to non-zero bin ratio,

� � v�"v f (14)

By changing
�
, the results of the algorithm will have a vary-

ing umber of non-zero coefficients (it should be noted that this
convention is not just for QIT. It is also used for IT, where the
zero bin is the thresholding parameter. So we can compare
equivalent coefficients quantized with QIT for a specific num-
ber of non-zero coefficients). A four bit quantizer (16 levels)
was selected to quantize each coefficient. To show the con-
vergence of the algorithm, simulations were run for 20 and
100 iterations. The results are shown in Figure 3. The graph
with plus symbols is iterative hard thresholding and the re-
sults achieved when quantizing this solution are shown with
circles. QIT and its quantized output are shown with cross and
star symbols. Note that due to the relaxation approach used,
the output of QIT is not automatically quantized. The hor-
izontal axis shows the number of non-zero coefficients. We
can see that for differenet numbers of non-zero coefficients,
IT gives better SNR than QIT. However after quantization
of the coefficients, the SNR of the decoded quantized coef-
ficients of QIT is better than quantized IT. We also see that
with more iterations, QIT and its quantized output get closer
to each other, which shows that the algorithm is converging to
a quantized solution. Another observation to be made here is
that the SNR starts to decrease when we use a large number of
non-zero coefficients. This is an artifact in the analysis where
we use a fixed coding cost, i.e. a fix number of quantization
levels. To show the benefit of using QIT, we need to show
the operating rate-distortion (R-D) curve by computing the
convex hull for different bit budgets. The audio sample used
in the previous experiment is here used for coding with 4 to
9 bit quantizers. The operational R-D is shown in Figure 4.
The graph shows that we have 0.2 dB SNR improvement for
1 bit/sample and up to 1 dB improvement for 12 bits/sample.
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Fig. 3. For two different numbers of iterations (20 and 100)
output SNRs are shown in four different cases (IT (+), QIT
(x), quantized QIT (*), quantized IT (o))

5. CONCLUSION

In this paper we introduced a new method for jointly approx-
imating and quantizing a signal. The newly presented itera-
tive thresholding method was refined for this purpose and we
have shown that even with a small number of iterations the
algorithm can give a relatively good result (close to the fixed
point). The algorithm is much faster than previously used MP
type algorithms. Each iteration of MP and QIT have the same
order of computation. However MP extracts one element at
a time and therefore requires at least as many iterations as
the number of atoms to be extracted, while QIT calculates
all the coefficients with less iterations. With the proposed
method, we have shown that jointly quantized and sparsified
coefficients achieve a better SNR for the same number of non-
zero coefficients than sparse approximation and quantization
done separately. Because a psychoacoustic model was not
considered, this kind of coefficient coding is not comparable
with some well known available coders. This paper aims to
show the preference of using quantized sparse approximation
instead of a posteriori quantization of sparse representation.
More investigations are required to study ways of choosing
the relaxation parameter, finding an appropriate initialization,
considering psychoacoustic models and using listening test
for final evaluation.
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