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Abstract

Sparse approximation of signals, using a linear generative model, is the subject of this report.
The aim of sparse approximation is to find an approximate representation of the given signal
using few elementary functions. Using a minimal representation of the signal improves the
performance of a wide range of signal processing applications. Denoising, coding, deblurring,
sampling and inpainting are just some examples of these applications.

The sparse approximation problem is formulated as an optimization problem which is gen-
erally difficult to solve. It can not exactly be solved in a polynomial time. Fortunately, it is
possible to relax it to other optimization problems which are (approximately) solvable. A wide
range of optimization techniques have been used to solve such problems. These techniques scale
differently with the size of problem. Here we are interested to the fast and scalable optimization
methods.

Alternatively there exist other algorithms which find acceptable solutions, without directly
minimizing any objective. It has been observed that using the sparse vectors, found by practical
sparse approximation methods, improve the performance of mentioned applications, even though
they are not the sparsest solutions. These algorithms have been considered as alternatives to
the direct minimization techniques when they are simpler in implementation or guaranteed to
provide sparse solutions.

The aim of this report is to investigate the potentially scalable sparse approximation meth-
ods. Although it is difficult to cover all such algorithms, most of the practical algorithms will be
explored here. In this framework, the high computational or heavy memory demand methods
can not efficiently be implemented on a large scale problem. The difficulties in the implemen-
tation of the sparse approximation methods in this setting will be highlighted here. Ideally we
prefer to use the methods which computationally scale linearly or log-linearly, i.e. O(n log(n)).
Unfortunately it is not possible for the sparse approximation methods. A brief complexity
comparison between different greedy methods can be found in the last part of this report.

When we want to find a sparser solution, which can not be provided using a simple sparse
approximation method and a structured dictionary, we should choose a parallelizable sparse
approximation method. This means that the algorithm has to be implemented using a multicore
processing unit. This is also discussed briefly, while a more comprehensive investigation is left
for the future work.
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Introduction

Sparse coding is a minimal representation of a given signal. This minimality can be measured
as the sparsity of representation. One can classify the sparse coding problems as the sparse
approximation or the sparse representation. A sparse representation is sometimes called an
exact sparse representation. Such a sparse code can be found using an optimization problem,
which we formulate in Chapter 1. This formulation includes a linear generative model, called a
dictionary, which can present any given signal. To have the flexibility of choosing a sparse code,
we need an overcomplete dictionary, i.e. the dictionary which has more elementary functions,
called atoms, than a basis. The dictionary has to be selected such that it (approximately)
provides a sparse representation. In a simple setting this can be done by combining some bases,
e.g. Fourier basis, Wavelet, Curvelet.

A dictionary can be adapted to a given set of training data using a dictionary learning
algorithm. The sparse approximation is an elementary part of the most dictionary learning
problems. In this framework, we need to repeatedly find the sparse approximations of the given
set of signals using a (partially) adapted dictionary. For a large scale dictionary adaptation, we
need a scalable sparse approximation method. The sparse approximation formulations are thus
extended to the sparse coding in the matrix form. This also provides an extra flexibility to find
matrices with different sparsity patterns along the column or the row directions.

A common technique for solving the sparse coding problem often is to minimize an objective,
subject to a constraint. The constraint can be removed when the coefficients have only to be
admissible. Various optimization methods have been introduced to solve different formulations
of the sparse approximation problem. The size of sparse coding problems is often such that some
optimization techniques are not tractable. Although some linear or quadratic programming and
stochastic sampling methods are tractable for small and medium size problems, they are too
slow for the large problems. In contrast, the gradient descent based methods, which might be
considered as slow for small problems, are good candidates for solving large scale sparse coding
problems.

Direct optimization of the sparse coding problem is not the only approach to find sparse
representations. It is sometimes preferred in practice to solve the optimization problem using a
greedy method. These greedy methods gradually increase the selected support of the coefficient
vector to reduce the approximation/representation errors. These methods are especially useful
when the problem size is large such that applying other optimization methods are not tractable.

Chapter 2 briefly reviews popular sparse approximation algorithms. As these algorithms
are numerous, it is difficult to completely cover them in a short technical report. It is thus
preferred, firstly to classify different algorithms based on their approaches to the problem, then
a brief explanation about the motivations and the applications of the approach are presented.
The approaches, which have been used more often by the researchers, are explored in more
detail.

Chapter 3 will explore the issues in scalability of the algorithms. When the computational
complexity of an operation scales quadratically with the size of problem and the operation
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has to be implemented at each iteration, total complexity of the algorithm does not allow a
tractable implementation on a standard computer. On the other hand, the memory usage of
the operator is also very important, if the operator needs to access the whole data at once. Such
an operator is scalable if it is implementable using a set of smaller size operators. An example
of such an operator is matrix-vector multiplication which can be implemented by breaking
down the matrix to some disjoint set of columns and implementing each block separately to
the corresponding part of the vector and some post operations. Such an operator can be
implemented in parallel in a multicore/multiprocessor computer or in a Graphical Processing
Unit (GPU), which accelerates the implementation of the operator.

An iterative algorithm is generally fast if each iteration is cheap and the algorithm converges
quickly. Hence another important property of an algorithm, which has to be investigated,
is its convergence. The convergence of only few methods have been analyzed analytically.
Alternatively the convergence can be investigated empirically using a set of reference problems.
Such comparative studies are explored in section 3.2.
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Chapter 1

Sparse Coding Formulation

This chapter briefly explores different formulations for the sparse coding problem. These formu-
lations are often presented using some optimization problems, which generally are not solvable,
i.e. an exhaustive search is the only approach to solve such problems. Different relaxed for-
mulations for such challenging problems will be presented in this chapter. As one aim of this
technical report is to find a potentially scalable sparse approximation method for dictionary
learning, the matrix form of the sparse approximation problem, which includes simultaneously
sparse approximation as a special case, will also be presented here.

1.1 Sparse Coding Optimization Formulations

The aim of sparse coding is to represent a signal exactly or approximately by few coefficients.
Let D ∈ Rd×N , y ∈ Rd and x ∈ RN be the generator matrix (or dictionary [1]), the signal and
coefficient vectors respectively. The linear generative model is now formulated as,

y = Dx. (1.1)

We assume that D is full rank (rank(D) = min(d,N)). In this framework when d = N , the
exact coefficient vector is uniquely found by the inverse operator of D, x = D−1y. When the
model is over-determined d > N , one can choose a full rank Dr ∈ Rd×d, by using d rows of
D, and find x by using D−1

r . The underdetermined inverse problem (d ≤ N), which is the
main focus of this report, does not have a unique solution, which means that the number of
equations are less than the number of unknown parameters. To resolve the ambiguity, different
constraints have been proposed to impose prior information over the coefficients. The most
well-known constraint is the minimum ℓ2 norm, which has successfully been used for decades.
It can be interpreted as imposing a Gaussian assumption on the probability density function
(pdf) of coefficients, which is an optimal assumption for many applications. A minimum ℓ2
norm representation can be calculated very fast using a linear operator. The inverse operator
D† is called pseudoinverse and can be found by,

D† = DT (DDT )−1. (1.2)

An issue with using minimum ℓ2 representation is that the coefficients are mostly non-zero.
Although it is useful for certain applications, for example when we have erasure or noise [2] in
the model, the minimum ℓ2 overcomplete representation is not the optimal representation for a
significant class of signal processing applications. Instead, one can use a sparsity penalty J (.)
and find the sparsest representation. The signal representation is then formulated by,

min
x∈{τ :y=Dτ}

J (x). (1.3)
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In the ideal case, the operator J (.) counts the number of non-zero components. However the
optimization problem (1.3) using such a sparsity measure, which is called ℓ0, is an NP-hard
problem, in general [3]. Finding the solution of these problems is computationally difficult,
even in a medium size problem, and it can only in general be done using an exhaustive search.
Another approach is to apply an optimization technique to reduce ℓ0, subject to the constraint
proposed in (1.3) [4, 5], which can only find a sparser representation than the initial solution.
Alternatively a series of smoothed objectives, which converge to ℓ0 in the limit, can be optimized
iteratively [6]. In practice better local minima are yielded using smoothed objectives.

To find an acceptably sparse representation, on can use a relaxed sparsity measure, see for
example [7] and [8] and references therein for the generalization of the sparsity measure. The re-
laxed sparsity measure is not necessarily smooth and is often fixed during sparse approximation.
A common relaxed J (.) is ℓpp(x) :=

∑

1≤i≤N |xi|p, where xi is the ith element of x and p ≤ 1. A
special case, where p = 1, is particularly interesting since the problem (1.3) for p = 1 is convex
and can be solved using different convex optimization methods. The global minimum1 is then
found using these optimization methods. Furthermore, the analysis of the optimization methods
are easier using ℓ1 sparsity measure. The sufficient conditions, under which the solutions of the
sparse representation using ℓ1 and ℓ0 are equivalent, are investigated in [9, 10].

The set of K-sparse vectors are unbounded, which means it has infinitely large members in
an ℓp norm space. By letting an upper bound on the set of K-sparse signals, here ‖x‖∞ < c, the
ℓ1 penalty 1

K ‖x‖1 is the “convex envelope ” [11] of the non-convex ℓ0 [12], over the bounded K-
sparse set. There is thus no better convex approximation for an ℓ0 objective in this sense. Using
a more accurate approximation for the objective, leads to a non-convex optimization problem.
Various methods for optimizing such an objective have been introduced [13–16]. Although there
is no easy way to exactly solve the sparse representation problem using this class of sparsity
measures, in practice the sparse vectors found by these methods are sparser than ℓ1 sparse
representation. A slightly different sparsity measure is the logarithmic sparsity measure. It has
some useful properties which facilitate its minimization.

Jlog(x) =
∑

1≤i≤N

log x2
i (1.4)

This is sometimes called Gaussian entropy [7, 14].

1.1.1 Sparse Approximation

The exact sparse coding problem introduced in (1.3) is for a noise-free model. In practice, it is
often important to consider the noise effect in the model. The noise is often introduced as an
extra additive term. The signal generative model is then presented by,

y = Dx + n, (1.5)

where y, x and D are as before and n is the noise vector. Based on the distribution of noise in
the model (1.5), one can define a measure on the signal space. When the noise has Gaussian or
Laplace distribution, the expectation of the noise can empirically be calculated using ℓ2 or ℓ1
norms respectively. The ℓ2 norm has often been used in the sparse coding problem, which will
also be used here as the error measure. One can also assume the model mismatch as the noise
in the proposed model in (1.5). In this framework, an underdetermined signal approximation
can be formulated by,

x ∈ {∀θ : ‖y − Dθ‖2 ≤ ǫ} (1.6)

1Because the objective is not strictly convex, it could have non-unique solutions. Under a mild condition,
which is often satisfied by the sparse representation settings, the solution is unique.
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where ǫ is a constant. The problem is the same as (1.1), using ǫ = 0. (1.6) is also an underde-
termined system and the solution space has more than one element. By minimizing a strictly
convex objective, e.g. ℓp : 1 < p, over this convex set we can find the unique solution. The
minimum ℓ2 overcomplete approximation has been used for denoising, parameter estimation,
system identification and classification. The minimization of the ℓ2-norm over (1.6) can be
solved analytically using the regularized pseudo inverse operator defined by,

D† = DT (DDT + ǫ2I)−1. (1.7)

This operator is often preferred over (1.2) in practice, not only because it considers the noise
effect, but also because it can solve the ambiguity caused by any singularity of DDT , when D
is rank deficient.

Like the noise-free model, the linear operator (1.7) generally finds a non-sparse solution. A
sparsity measure can be minimized, with the constraint (1.6) to find a sparser approximation.
Although ℓ1 is not strictly-convex, it can be shown that the following optimization problem,
called Basis Pursuit DeNoising (BPDN), has a unique solution,

min
‖y−Dx‖2≤ǫ

‖x‖1. (1.8)

The dual representation of BPDN, called LASSO [17], is defined by,

min
‖x‖1≤τ

‖y − Dx‖2 (1.9)

There is an injective mapping between ǫ and τ such that BPDN and LASSO have the same
solutions. These problems are convex and can be solved exactly by using an appropriate convex
optimization method. The solutions of BPDN and LASSO are sparse and denoised2.

Sometimes it is useful to extend the problems (1.8) and (1.9) by using another sparsity
measure. Although the problem is no longer convex, the local solutions, which can be found
using some of the algorithms presented in Part 2, are often sparser.

(1.8) and (1.9) are constrained optimization problems. There are many effective optimization
methods which can only be applied to the non-constrained problems. By using the Lagrangian
multipliers method, we can generate an unconstrained problem. The optimization problem is
now formulated by,

min
x

‖y − Dx‖2
2 + λ‖x‖1, (1.10)

where λ is the Lagrangian multiplier. The sparsity of the approximation can be modified
by changing λ. Although this optimization problem is not strictly-convex, it has a unique
solution [20, 21, Proposition 3.1]. This can be proved by showing that the quadratic part
is strictly-convex, the remaining part ‖x‖1 is convex and the objective is unbounded when
‖x‖ → ∞ [22, Proposition 2.5.6]. The uniqueness of the solution is a necessary requirement for
the Perfect (Exact) Recovery Problem [23]. It has been shown that the sparse representation of
a signal is unique if the signal is sparse enough and the dictionary satisfies the Exact Recovery
Condition (ERC)3.

This change in definition significantly increases the number of algorithms that can be applied
to solve the problem. For example most of the (sub-)gradient descent methods can now be
applied to (1.10), see [24,25]. Therefore (1.10) is the most desirable formulation for the sparse
approximation problem.

2The optimality of the solutions using an orthogonal dictionary is guaranteed [18]. This framework has been
used in the overcomplete setting. Promising results have been reported, for example, in [19].

3ERC of a set of indices Λ is defined by ERC(Λ) := 1−maxω /∈Λ ‖D†
Λdω‖1, where DΛ is the matrix generated

using the atoms indexed by Λ [21].
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Similar to the sparse representation problem, one can generalize the sparse approximation
problem by using a different J (.) as the sparsity measure. The generalized form of (1.8) is
formulated by,

min
‖y−Dx‖2≤ǫ

J (x), (1.11)

and the generalized form of (1.10) is formulated by,

min
x

‖y − Dx‖2
2 + λJ (x). (1.12)

If J (.) is non-convex, e.g. ℓp : p < 1, sparse approximation problems (1.11) and (1.12) have
numerous local minima and the global solution can not easily be found, in general4. In practice,
it is observed that (1.12) for ℓp : p < 1 often converges faster and/or finds sparser solutions
[14–16].

Debiasing:

The solutions of the problems (1.11) and (1.12), when J (.) 6= ℓ0, are always biased [8]. It means
there are better approximations with the same sparsity pattern. This can be compensated for
by using a post processing step, called de-biasing. In this process the signal is orthogonally
projected onto the space selected by the non-zero coefficients. Let DI be the dictionary com-
posed by using the selected atoms in the approximation. The orthogonal projection can be
found using the linear operator pseudoinverse, which was defined in (1.2). Because DI depends

on the sparsity pattern, the calculation of D†
I can not be done a priori. This error is often

reduced using a sparsity measure which is closer to ℓ0. This is also another reason that ℓp and
logarithmic sparsity measures are preferred to be used in some practical applications of the
sparse approximations [26].

1.2 Sparse Matrix Coding

This section generalizes the sparse coding problem from the vector space to the matrix space.
It is closely related to the simultaneous sparse approximation/representation [27], dictionary
learning [28], sparse source separation [29] and structured dictionary learning [30–32]. Let
Y ∈ Rd×L, X ∈ RN×L and D ∈ Rd×N be the signal matrix, the coefficient matrix and the
dictionary, respectively. When d < N and D is full-rank, the underdetermined linear generative
model is defined by,

Y = DX, (1.13)

and the noisy linear generative model is also defined by,

Y = DX + N, (1.14)

where N ∈ Rd×L is the noise (or the model mismatch) matrix. Given Y and D, the solution
spaces for the problems (1.13) and (1.14) are respectively defined as:

Λexact := {∀Θ : Y = DΘ}, (1.15)

and
Λnoisy := {∀Θ : ‖Y − DΘ‖F ≤ ǫ}, (1.16)

4The term in general is used to note that under certain conditions (1.12) and (1.10) share the solution support.
In this case, the solution support of (1.12) could obviously be found by solving (1.10). An extra step is necessary
to find the coefficient magnitudes by solving a reduced order optimization problem, which has a unique solution.
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where ‖.‖F is the Frobenius norm5 and ǫ ∈ R+. These convex sets have more than one element
each, as a result of underdetermination of the generating model. We can now impose extra
constraints on the model to find desired solutions. Let the ℓp norm, for p ≥ 1, be defined by,

ℓp(Θ) = (
∑

i,j

|θi,j|p)1/p, (1.17)

where θi,j is the (i, j) element of Θ. ℓp is a norm in the matrix space. Bℓp(γ) = {Θ : ℓp(Θ) ≤ γ},
called the ℓp ball, is thus closed and convex. Using a minimum ℓp constraint over Λexact and
Λnoisy, the cardinality of the solution sets are reduced to one, which is a similar result to the
vector form of sparse approximation. A special case of this problem is when p = 2, where the
solution can be found using the linear operator introduced in (1.2). (1.17) for a p < 1 generates
a non-convex objective and (1.17) is no longer a norm. Similar to the vector space, ℓpp(.) : p ≤ 1
generates a sparsity measure for the matrix vector space by the following formula,

Jp(Θ) =
∑

i,j

|θi,j|p, (1.18)

The sparse matrix representation or approximation is then defined by minimizing J (X) =
Jp(X), such that X lies in Λexact or Λnoisy respectively. The sparsity measure (1.18) is an
element-wise operator. In next chapter, it will be shown how this separability facilitates sparse
matrix coding.

A variation of sparse matrix approximation can also be formulated using a Lagrangian
multiplier λ as follows,

min
X

‖Y − DX‖2
F + λJ (X). (1.19)

An advantage of the formulation (1.19) over minimizing J (.) over Λnoisy, is that when J (.) is
a column-wise operator, e.g. (1.18), it can be minimized column by column, using a standard
sparse approximation method.

1.2.1 Structured Sparsity

No sparsity pattern is proposed in the definition of J (.) in (1.18), which means that the value
of J (.) does not change by relocating the non-zero elements. Such a pattern is often desirable
when natural signals are sought. Simultaneous sparse, tree and harmonic structures are some
examples of such sparsity patterns. In this framework a matrix X with a minimum number of
non-zero columns is sought. The following definition for J (.) has been used for the simultaneous
sparse coding [27,33–35],

Jp,q(Θ) :=
∑

j

(
∑

i

|θi,j |q)
p
q , (1.20)

where 0 < p ≤ 1 ≤ q. By letting q ≥ 1, Jp,q(Θ) =
∑

j(‖θj‖q)
p. A minimum non-zero columns

can be found by choosing 0 < p ≤ 1, which promotes the sparsity of [‖θj‖q]j . Although it
is possible to use any q ≥ 1, particularly q → ∞, it is preferred in practice to use q ∈ {1, 2},
which also provides noise robustness. Note that the sparsity measure Jp,q(.) defined in
(1.20) is not an element-wise operator, when p 6= q. Here the conventional sparse
approximation methods can not directly be used for this problem. The dictionary
learning problem, using such a sparsity measure, has be presented, for example, in [28].

5Frobenius norm is the ℓ2 norm of the matrix vector space and defined by ‖X‖F = |〈X,X〉|1/2, where 〈., .〉 is
the inner-product of the matrix space which is defined by 〈X,Y〉 := tr{XT

Y}
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Chapter 2

Sparse Coding Algorithms

The sparse approximation methods are explored in the following section by starting with an
overview on different approaches to the problem. Some greedy and gradient descent based
methods are then introduced with an introductory presentation of the majorization minimiza-
tion method (MM). This technique and the gradient projection method are the bases of most
fast sparse approximation methods, which will be explored in the next sections in more details.

2.1 Sparse Approximation Methods

Sparse coding methods can be classified based on their approaches to the problem. Some of
these classes are as follows,

1. Greedy pursuit: These methods start with a coarse approximation and gradually refine
the approximation by changing the selected set of atoms and the magnitudes of the se-
lected coefficients. These methods include Matching Pursuit (MP) [1], Orthogonal MP
(OMP) [3,36] and their variations like Orthogonal Least Square (OLS) [37], also called Op-
timized OMP (OOMP) [38], Gradient Pursuit (GP) [5] and Stagewise OMP (StOMP) [39].
Slightly different methods in this class are the greedy methods for convex relaxed sparse
approximation (1.10), called polytopes faces pursuit [40–42].

2. Convex and non-convex optimization: All methods that directly minimize the problems
(1.8) and non-convex versions of that, (1.11) or (1.12). When the problem is convex, the
sparse approximations can be found using standard linear and quadratic programming
techniques [8, 11]1. These methods are not very efficient for large-scale problems. Other
optimization methods, like gradient descent based methods and regression methods, are
often preferred for large scale problems, see for example [24,43–45]. The objective that we
want to minimize becomes non-convex using any non-convex sparsity measures. Finding
the global minimum of such an objective is difficult in general. Some methods are proposed
to find a local minimum of such optimization problems [13–16]. It has practically been
shown that the local minimum is often sparser for the same approximation errors, which
can justify the use of such methods [15].

3. Based on Stochastic Modeling: These methods are based on inducing some prior distri-
butions onto the coefficient vectors, which promote sparsity of the representations. They
are often based on the maximum a posteriori (MAP) framework, in which the Bayesian

1Some Matlab R© implementations of such methods can be found in the following packages: 1- Atomizer,
http://sparselab.stanford.edu/atomizer, 2- ℓ1 Magic: http://www.l1-magic.org
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inference has been used to calculate the posteriori distribution, see for example [46–48].
They can generally be classified in the class of non-convex optimization methods and have
only aspire to finding the true MAP estimate.

4. Exhaustive Search: This method is only tractable when the size of problem is small or some
prior information, for example about the support of coefficient vectors or the subspace
in which the signal lies, is given. The complexity of the problem can be reduced using
cutting-plane techniques [49].

Although this classification is neither rigid, while some methods might fit into more than one
classes, nor complete, while some methods do not lie on any classes, it gives us a perspective of
the sparse coding methods. Some the common convex/non-convex optimization methods and
greedy methods have been explored in this chapter. The aim of this report is to review the
methods which can be implemented on the large problems. The exhaustive search methods will
not be reviewed in this report as they are hardly scalable, while the stochastic modeling based
methods will only be considered as a subset of optimizing non-convex penalty functions.

2.2 Greedy Methods

Greedy methods are introduced to find an acceptable sparse approximation using an iterative
scheme. In each iteration of the algorithm, some atoms are entered in to the support by choosing
non-zero coefficients and the values of coefficients are updated, which is the forward step, and
then some atoms might be deselected from the support, which is the backward step. In the
simplest case one atom is added to the current support in the forward step and there is no
backward step. This process can be extended by applying different forward and backward
steps. The most famous method, called matching pursuit (MP) [1], is inspired by the greedy
regression methods. Because MP is simple to implement and it is very fast (per iteration), it has
been investigated in detail, see for example [50]. Some variations of MP are reviewed in [5], and
their computational complexity are compared, which will be discussed below. A greedy method
with a backward step is StOMP [39], which deselects the atoms with small contributions in
signal representation at each backward iteration. Some of these methods are introduced in the
following.

2.2.1 Matching Pursuit

MP was initially introduced to find time-frequency representations of the signals in [1] and was
then found to be a very efficient sparse approximation method. The forward step of MP is to
add one atom to the currently selected atoms. In a normalized dictionary D, let {αi}i∈[1,n] be

the selected atom indices and the signal r[n] = y − ∑

i∈[1,n] dαixαi be the residual of y in the
nth iteration. The atom which has the maximum correlation, i.e. maximum inner-product with
the residual signal at the nth iteration, is selected as the n+1th atom. The atom selection step
can be formulated as,

αn+1 = arg max
i

∣

∣

∣

〈

di, r
[n]

〉∣

∣

∣
, (2.1)

and the corresponding coefficient is found by the following formula,

xαn+1 =
∣

∣

∣

〈

dαn+1 , r
[n]

〉
∣

∣

∣
. (2.2)

There is no backward step in MP to cancel out the atoms. MP terminates after a certain
number of iterations or when the residual error ‖rn‖2

2 becomes small (< ǫ : ǫ ∈ R+). An
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issue with MP is that the algorithm might select an already selected atom, which makes the
convergence of the algorithm slow. If the aim is to find a quantized approximation of the signal,
the selected coefficient can be quantized at each iteration [51]. The quantization error might
be compensated for by the following selected atoms, as long as the following selected atoms are
non-orthogonal to the current atom.

Another issue with MP is that the coefficients do not provide the best approximation using
the selected support. This can be compensated for by orthogonally projecting the signal onto
the span of the support. It is the motivation for another greedy algorithm, which will be
explored in the following subsection, called Orthogonal MP.

2.2.2 Orthogonal Matching Pursuit

Using the coefficient selection step (2.2), we can easily show that dαn+1 ⊥ r[n+1]. This fact

might not be true for all {d{αi}i∈[1,n]
} and r[n+1]. Let r[n+1] = r

[n+1]
O +

∑

i∈[1,n] dαiβi such

that ∀i ∈ [1, n + 1] : dαi ⊥ r
[n+1]
O . In other words, {βi}i∈[1,n+1] is found by projecting r[n+1]

onto span{dαi}i∈[1,n+1] and r
[n+1]
O is found by subtracting the projection. A relation between

‖r[n+1]‖2
2 and ‖r[n+1]

O ‖2
2 can be found, using the orthogonality of r

[n+1]
O and

∑

i∈[1,n] dαiβi, as
follows,

‖r[n+1]‖2
2 = ‖r[n+1]

O +
∑

i∈[1,n]

dαiβi‖2
2

= ‖r[n+1]
O ‖2

2 + ‖
∑

i∈[1,n]

dαiβi‖2
2,

∴ ‖r[n+1]
O ‖2

2 ≤ ‖r[n+1]‖2
2.

(2.3)

This motivates using the projection to reduced the residual. Orthogonal MP has been introduced
in [36] and [3] in such a framework. Although the projection step is computationally expensive,
it can be implemented using QR and Cholesky matrix factorizations, see for example [50] and [5]
for more details. However the projection operator is not really tractable for large scale problems.
The gradient pursuit algorithm was introduced in [5] to relax the backward step and reduce
the computational complexity of the algorithm. This algorithm is explored in the following
subsection.

2.2.3 Gradient Pursuit

The extra step of OMP includes an orthogonal projection onto the span of the selected atoms.
This projection can be done using the pseudoinverse operator which was defined in 1.2. A matrix
inversion is needed to apply this operator, which is computationally expensive in a large scale
problem. Although there are some more efficient ways to calculate the pseudoinverse of such
matrices using their structures [5], an alternative can be to relax the coefficient adjustment step.
Instead of fully projecting the residual onto the selected space, we can choose a new coefficient
vector, with the same support, with less residual error. Let the residual error at the n + 1th

iteration be noted by rn+1
R . A new relaxed OMP would be relevant if the residual satisfies the

following inequality,

‖r[n+1]
O ‖2

2 ≤ ‖r[n+1]
R ‖2

2 ≤ ‖r[n+1]‖2
2. (2.4)

In other words, the coefficient adjustment step is to reduce the following cost function, by
changing {xi}i∈I

S

{αn+1}, where I includes the indices of the first n selected atoms and |I| ≤ n,

‖y −
∑

i∈I

dixi‖2
2, (2.5)
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The minimizer of (2.5) is the projection onto span{di}i∈I
S

{αn+1}, which can be found using
the gradient descent or the conjugate gradient methods. The Gradient Pursuit method uses
a certain number of iterations of these iterative algorithms [5], which are also guaranteed to
satisfy (2.4).

2.2.4 Other Greedy Methods

The idea of pursuing a good sparse solution is interesting as it can be implemented relatively fast
and the solutions, even though they are not the sparsest solutions, are sparse enough for some
practical applications, e.g. coding, classification. As a result many variation on original MP
algorithm have been proposed to improve the overall success of sparse approximation. OMP
and GP have been reviewed earlier. The atom selection operation in MP, OMP and GP are
identical, i.e. choosing the atom which is most correlated to the residual signal from the previous
iteration. The orthogonal projection onto the span of selected atoms was introduced in OMP
to reduce the residual error at each iterations, which is caused by non-orthogonality of the
atoms. The issue is that the simple atom selection approach in OMP does not always provide
the minimum residual error at each iteration (even after the orthogonal projection). A method
called Orthogonal Least Square (OLS) [37] has been presented as an alternative approach for
the atom selection step. The aim of OLS at each iteration is to choose the new atom such that
the residual error, after projecting the signal onto the selected space, becomes minimum. In
other words, the new atom is selected by minimizing the following problem at each iteration,

αn+1 = argmink∈K\I min
{xi}i∈I

S

{k}

‖y −
∑

i∈I
S

{k}

dixi‖2
2, (2.6)

where K is the index set of the dictionary and I = {αk}k∈[1,n] is the index set of the
first n selected atoms. Solving (2.6) can be simplified using (2.1) with a modified dictionary.
The modified dictionary is generated at each iteration by projecting non-selected atoms, i.e.
{di}i∈K\I , onto Sc, which is the complement space of S = span{di}i∈I and re-normalizing the
atoms2. Hence OLS includes the atom selection using modified dictionary and the projection
onto the span of the selected atoms at each iterations. However this additional orthogonalization
does not scale well and as such OLS has not been popular for large scale problems.

2.3 Relaxed Sparse Approximation Methods

The sparse approximation (1.12) is called “relaxed“, when the sparsity measure J (.) 6= ‖.‖0.
The aim of relaxation is to make the objective function continuous and piecewise differentiable.
The optimization of such problems are easier, as long as various (sub-) gradient methods can
be used. If the relaxed objective is convex, the global minimum can be found using a gradient
descent method. Although this is no longer true for the non-convex objective, sparser solutions
can often be found by warm starting3 and using a suitable step size at each update.

One large class of sparse approximation methods either explicitly or implicitly is based on
an optimization technique called majorization minimization method. This framework helps to
simplify a complex multivariable optimization problem to an iterative optimization of a set of
single variable optimization problems, which can be optimized independently. This framework
is explained in the next subsection, which is followed by introducing the sparse approximation
methods based on this technique.

2If an atom is orthogonal to Sc, we remove that atom from the modified dictionary.
3Initializing the algorithm with a point satisfying some conditions. Starting with the convex relaxed solution

or another sparse solution are some examples of such a warm start.
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2.3.1 Majorization Minimization Method

Optimization of a multivariable problem like (1.12) is challenging. A technique, called “Ma-
jorization Minimization Method” [52,53], has been introduced to simplify such problems in an
iterative framework. In the majorization method, the objective function is replaced by a sur-
rogate objective function which majorizes it and can be easily minimized. Here, for scalability,
we are particularly interested in surrogate functions in which the parameters are decoupled, so
that the surrogate function can be minimized element-wise.

A function ψ majorizes φ when it satisfies the following conditions,

φ(ω) ≤ ψ(ω, ξ), ∀ω, ξ ∈ Υ

φ(ω) = ψ(ω, ω), ∀ω ∈ Υ,
(2.7)

where Υ is the parameter space. The surrogate function has an additional parameter ξ. At each
iteration we first choose this parameter as the current value of ω and find the optimal update
for ω.

ωnew = arg min
ω∈Υ

ψ(ω, ξ) (2.8)

We then update ξ with ωnew. The algorithm continues until we find an accumulation point. In
practice the algorithm is terminated when the distance between ω and ωnew is less than some
threshold.

This iterative method can be viewed as a block-relaxed minimization of the joint objective
ψ(ω, ξ) [52]. In one step, we find the minimum of ψ based on ω. In the next step we minimize
the objective based on ξ.

ξnew = arg min
ξ∈Υ

ψ(ω, ξ) (2.9)

In our formulation, minimization of ψ(ω, ξ) based on ξ is done using ξnew = ω (due to the
definition of majorization in (2.7)).

There are different ways to derive a surrogate function. Jensen’s inequality and Taylor series
have often been used for this purpose [54,55]. The Taylor series of a differentiable function φ(ω)
is,

φ(ω) = φ(ξ) + dφ(ξ)(ω − ξ) +
1

2!
d2φ(ξ)(ω − ξ)2 + o(ω3). (2.10)

When φ has a bounded curvature, i.e. d2φ < cs for a finite constant cs, it is majorized by,

φ(ω) ≤ φ(ξ) + dφ(ξ)(ω − ξ) +
cs
2

(ω − ξ)2,∀ω, ξ ∈ Ω, (2.11)

and we can define ψ(ω, ξ) (which satisfies (2.7)) as follows,

ψ(ω, ξ) = φ(ξ) + dφ(ξ)(ω − ξ) +
cs
2

(ω − ξ)2. (2.12)

Then, at each iteration, φ(ωnew) ≤ ψ(ωnew, ω) ≤ ψ(ω, ω) = φ(ω), hence φ does not increase.
Conditions for which such algorithms converge have been presented in [52] and [54].

In the next subsections some of the sparse approximation methods based on, derived from
or related to the majorization minimization method will be explored. The surrogate function
can be generated by a majorizing function for the quadratic term, the sparsity measure or
both parts of (1.12). It demonstrates a possible wide range of sparse approximation methods,
based on how the majorizing function is generated. If the surrogate objective is generated by
majorizing the quadratic term of 1.12, the algorithm can be interpret as the gradient projection
method, with a certain step size. The gradient projection is a well-known technique, which can
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minimize a continuously differentiable constrained optimization problem. The current solution
is updated in two consecutive steps in this method, moving in the gradient direction, followed
by projection onto the admissible set, see for example [56,57] for more details. This technique
inspired many sparse approximation methods, which will be surveyed in the following.

2.3.2 Iterative Thresholding

A difficulty in multivariable optimization problem like (1.12) is the coupling effect. It means the
problem can not separately be solved with respect to each parameter. The sparsity measure is
often an element-wise operator4. By majorizing the quadratic term of (1.12) with an element-
wise objective, based on the coefficients, the new objective can be minimized element-wise.
This has been applied to the sparse approximation problem, and called iterative thresholding5

[43,59,60]. The quadratic term of (1.12), ‖y−Dx‖2
2, has a bounded curvature and a majorizing

objective can be found using Taylor series. By using (2.12), the majorizing objective for the
quadratic is found as follows,

||y − Dx||22 ≤ ||y − Dx||22 + c||x − x‡||22 − ||Dx − Dx‡||22
= ||y − Dx||22 + πx(x,x

‡)
(2.13)

where πx(x,x
‡) is a function defined as follows,

πx(x,x
‡) := c||x − x‡||22 − ||Dx − Dx‡||22. (2.14)

If ‖D‖ < c, where ‖.‖ is the spectral norm operator, πx(., .) is a convex function based on x,
with a minimum at x = x[n]. Let φ(x) be the objective in (1.12). ψ(x,x‡) = φ(x) + πx(x,x

‡)
satisfies the conditions (2.7). As mentioned in subsection 2.3.1, as long as the minimization of φ
based on x‡ is easily found by x‡∗ = x, the alternating minimization can be done by minimizing
ψ based on x and updating x‡ by the current x∗.

Although solving the decoupled problems is significantly easier than solving the original
problem, only some of the sparsity measures J (.) allow the problem to be solved analytically.
Among them we are interested in ℓ1 and ℓ0

6, which will be presented in the next subsections.
Although for the sparsity measure ℓp : p < 1, the decoupled problems can not be solved
analytically, it can be solved using a gradient projection method, with a simple look up table
to calculate the projection, to compare the results with the reweighting methods, which will be
discussed in subsection 2.3.3.

2.3.2.1 ℓ1 relaxed sparse approximation:

• Non-adaptive gradient projection: The sparse approximation in this setting was
independently introduced in [58] and [43]. This method is a generalization of the algorithm
introduced by Sardy et al. [62], for the block orthonormal and union of orthonormal
dictionaries. The sparsity measure ℓ1 is the sum of the absolute values of coefficients,
‖x‖1 =

∑

i∈[1,N ] |xi|. Let the auxiliary parameter x‡ be x[n]. ψ(x,x[n]) can now be
reformulated as,

ψ(x,x[n]) ∝ cxTx− 2xT
(

DT
(

y − Dx[n]
)

+ cx[n]
)

+ λ‖x‖1. (2.15)

4The joint sparsity measure is a column-wise operator which can be used in the dictionary learning, where a
minimum size dictionary is sought [31].

5It is also called sparse approximations using majorization minimization method or Expectation Minimization
(EM) based sparse approximations [58].

6Although the sparse approximation using ℓ0 is not classified as the relaxed problem, it can be solved using
MM technique [61].
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ψ is a convex function and its optimum can be found by the fact that the sub-gradient
should include zero, 0 ∈ ∂ψ(x,x[n]), where the sub-gradient ∂ψ(x,x[n]) can be found by,

∂ψ(x,x[n]) = 2cx − 2
(

DT
(

y − Dx[n]
)

+ cx[n]
)

+ λ∂‖x‖1. (2.16)

The optimal x∗, which is the updated coefficients x[n+1], can be found by applying the
soft shrinkage operator Sλ [18] to the vector,

a :=
1

c

(

DT
(

y −Dx[n]
)

+ cx[n]
)

. (2.17)

a is actually a scaled gradient of the quadratic term, which is sometimes called the Landwe-
ber [63] update [43]. soft shrinkage is a nonlinear operator defined by,

{x[n+1]}i = Sλ(a) =

{

ai − λ/2 sign(ai) λ/2 < |ai|
0 otherwise.

(2.18)

The convergence of the iterative method for ℓ1 relaxed sparse approximation is shown
in [43]. The convergence of the iterative thresholding algorithm is analyzed in [43] in a
more general framework in which the dictionary is an operator, which can also be nonlin-
ear and/or a continuous domain operator. In such a framework the convergence analysis
is more difficult as the week convergence does not guarantee strong convergence of a
sequence in the infinite dimensional space. It has been shown that iterative soft thresh-
olding converges R-linearly 7 in [66]. Bredies et al. [66] also showed that the asymptotic
convergence rate is of order O(n−1)8.

A slightly different approach to drive the iterative thresholding formulation for ℓ1 min-
imization is using the proximal operator splitting technique [20]. In this framework
1
2‖D‖ < c, which provides a larger step in the gradient direction at each coefficient up-
date. Note that although ψ does not majorize φ, the iterative algorithm is guaranteed
to converge to the minimizer of φ at the end. The larger step size, provided by choosing
1
2‖D‖ < c ≤ ‖D‖, accelerates convergence of the algorithm in practice.

• Adaptive gradient projection:

It was mentioned that choosing a smaller c does not make the algorithm unstable, while
practically accelerating its convergence. We can extend this idea by using even smaller c
using a line search technique to guarantee that φ is reduce at each update [68,69].

A gradient projection based algorithm is another algorithm proposed by Figueiredo et al.
in [24], called the Gradient Projection for Sparse Representations (GPSR). To simplify
the problem and make the algorithm differentiable, they used a technique previously used
in [8], called a parameter splitting. In this method, each parameter is split to two positive
parameters9. Each pair of new parameters associates to an atom and its negative version.
The dictionary size thus becomes double in the new framework. (1.12) now becomes a
constrained optimization problem with a differentiable objective as follows,

min
x,x̄∈R+

0

‖y − D (x− x̄) ‖2
2 + λ1T (x − x̄) . (2.19)

7Let x∗ = limn→∞{x[n]}. It is said to converge to x∗ at least with order p ≥ 1, see for example [64], if
there exists a constant c and a sequence {ǫn} such that |x[n] − x∗| < cǫn for all n and limn→∞

ǫn+1

ǫ
p
n

= θ for

θ ∈ (0, 1). A sequence is called to converge at least R-linearly if p = 1 [65]. A similar definition can be presented
on convergence of a sequence of vectors in a normed space.

8See [67] for the definition of Big O and Small O.
9This framework, using the setting presented in [24], can only be used for the real value sparse approximation.
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Algorithm 1 Fast Iterative Shrinkage/Thresholding Algorithm (FISTA)

1: initialization: c > ‖DTD‖ , x[0] = z[1], t[1] = 1, K
2: for k = 1 to K do
3: x[n] = Sλ(a(z[k]))

4: t[k+1] = 1+
√

1+4t[k]2

2

5: z[k+1] = x[k] +
(

t[k+1]−1
t[k+1]

)

(x[k] − x[k−1])

6: end for
7: output: x[K]

Figueiredo et al. proposed two different step sizes for the gradient projection method and
proved the convergence of the final algorithm.

The non-linear operator Sλ is the projection onto an ℓ1 ball. The radius of the ℓ1 ball can
be calculated after projection. To accelerate the convergence of the sparse approximation
Daubechies et al. [70] suggested to adaptively change the radius of the ball, which is equiv-
alent to use an adaptive λ. They also proved the convergence of the gradient projection
method with this setting.

Although the adaptive gradient projection technique accelerates the convergence of the
derived methods there does not exist analytical analysis about the convergence rate of all
methods. A new technique, called the “optimal first-order gradient method”or Nesterov’s
method [71], can be used to adaptively change the gradient step size. The convergence
rate of the new method is improved to the order O(n−2) [45, 72, 73]. The optimality of
the method means that we can not get any better convergence rate using similar (first-
order) gradient projection method. There exist different approaches to derive such optimal
first order gradient projection algorithms. Here, the algorithm presented by Beck et al.
in [45], which is called Fast Iterative Shrinkage/Thresholding Algorithm (FISTA), will be
explored.

FISTA uses the values of two consequent iterations, i.e. x[n] and x[n−1], to find the new
value x[n+1]. In other words, in this method there exists an extra series of parameters,
named z[n], which is generated using {x[k]}k∈{n−1,n}. Let a(x) := 1

c (DT (y − Dx) + cx) be
the generalized functional of a in (2.17). In the modified (adaptive) iterative thresholding
method, z[n] is used, instead of x[n], to find x[n+1] which is summarized in Algorithm 1.
The parameter t[k] change the effect of two previous iterations x[n−1] in the algorithm. If
we choose t[k] = 1, FISTA is identical to the non-adaptive iterative thresholding. Let φ(x)
and x∗ be the objective and an optimal solution of the problem (1.12) respectively. Beck
et al. showed in [45, Theorem 4.1] that for k ≤ 1 the following inequality holds,

φ(x[n]) − φ(x∗) ≤ 4c‖x[0] − x∗‖2

(k + 1)2
, (2.20)

which shows {φ(x[n]) − φ(x∗)} ≃ O(1/k2). They also introduced an adaptive method to
adjust parameter c which can improve the convergence of the algorithm in practice, even
though it does not change the order of convergence. The adaptive selection of c also is
useful if the actual spectral norm of the dictionary is unknown.

Another fast method, which uses two recent iterations to find the next iteration, is TwIST
[74]. Although TwIST algorithm shows promising results in the simulations, there is no
analytical study on the convergence rate so far.
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ℓ0 sparse approximation The sparsity measure ℓ0 counts the number of non-zero coefficients
and can be reformulated as ‖x‖0 =

∑

i∈[1,N ] f(xi), where,

f(α) :=

{

0 α = 0

1 otherwise.
(2.21)

Let the auxiliary parameter x‡ be x[n] as before. The surrogate objective is reformulated as,

ψ(x,x[n]) ∝ cxTx − 2xT
(

DT
(

y − Dx[n]
)

+ cx[n]
)

+ λ
∑

i∈[1,N ]

f(xi). (2.22)

(2.22) is not convex and the sub-gradient method can not be used to minimize ψ(x,x[n]). Instead
we can decouple (2.22) to N optimization problems. The objective of the ith problem can be
represented by,

{ψ(x,x[n])}i ∝ cx2
i − 2xi {DT

(

y − Dx[n]
)

+ cx[n]}i + λf(xi) (2.23)

(2.23) can be solved by letting x∗i being zero or non-zero, followed by checking the validity of
the solution. Let a be defined as in (2.17). x∗i can be found using a nonlinear operator Hλ,
called hard shrinkage [18], as follows,

{x[n+1]}i = Hλ(a) =

{

ai

√
λ < |ai|

0 otherwise.
(2.24)

The convergence of the iterative hard thresholding (IHT) is proven in [61]. The algorithm can
be modified to find a k-sparse approximation by replacing H with an orthogonal projection
onto the space of k-sparse signals [59]. That keeps the k largest coefficients and set the others
to zero. Although the algorithm has analytically been shown to have good performance in,
for example, compressed sensing [75], its performance when the dictionary does not have the
Restricted Isometry Property (RIP) is poor. Recently it has been shown that by choosing a
larger gradient step, the IHT algorithm is much more successful in sparse approximation even
when RIP is not satisfied [76].

2.3.3 Iterative Reweighting for Non-convex Objectives

It was shown in the previous subsection that the majorization minimization method can be used
to replace the quadratic term with some decoupled terms to facilitate the minimization. This
technique can also be used to replace the sparsity measure with an ℓ1 or ℓ2 norm. Because there
exist efficient algorithms to solve such a regularized approximation problem, the ℓp sparse ap-
proximation can easily be solved, i.e. finding a local minimum when p < 1, by iteratively solving
majorized problem. This technique has also been known as iterative reweighting technique in
literature. Some of these methods will be explained in the following.

2.3.3.1 Iterative Reweighted ℓ1

ℓp for p < 1 is concave in each orthant. It can be shown that any concave function is majorized
by the tangent line [54], which can be used to generate a majorization function for the sparsity
measure. If α ∈ R+ and α0 ∈ R+, where α0 is a fixed number, the following inequality holds,

αp ≤ αp
0 + pαp−1

0 α. (2.25)

18



Note that such a majorizing function should be restricted to the corresponding orthant. One
way is to use the absolute value operator to restrict the majorizing line to the orthant in which
current coefficient vector x[n] is located and symmetrically duplicating that line in other orthants
as follows,

∑

i∈[1,N ]

|xi|p ≤
∑

i∈[1,N ]

|x[n]
i |p + p

∑

i∈[1,N ]

|x[n]
i |p−1|xi|. (2.26)

When x
[n]
i → 0, the majorization function gets infinitely large, i.e. the original function is

upperbounded by infinity. Note this is not a problem of MM but a characteristic of the cost

function. In this case we let x
[n]
i stay at zero for the following iterations and reduce the problem

size. An alternative is to use a modified sparse approximation ℓp,ǫ with 0 < ǫ≪ 1 as follows,

ℓp,ǫ(x) =
∑

i∈[1,N ]

(|xi| + ǫ)p. (2.27)

(2.27) is bounded on xi ∈ R, which solves the singularity at x
[n]
i = 0. The majorizing function

can now be found as follows,

ℓp,ǫ(x) ≤ ℓp,ǫ(x
[n]) + p

∑

i∈[1,N ]

(|x[n]
i | + ǫ)p−1|xi|. (2.28)

By using such a majorization function for the sparsity measure we can find the surrogate
objective as follows,

ψ(x,x[n]) ∝ ‖y − Dx‖2
2 + λ

∑

i∈[1,N ]

|wixi|, (2.29)

which can be solved in a weighted pursuit framework [77]. Minimization of (2.29) would also be
easier if we also majorize the quadratic part, and using the iterative thresholding scheme [78].

Iterative reweighted ℓ1 has also been used for sparse representation with the ǫ-relaxed loga-
rithmic sparsity measure

∑

i∈[1,N ] log(|xi| + ǫ) in [15].

2.3.3.2 Iterative reweighting ℓ2

The surrogate objective made using a weighted ℓ1 penalty is a close approximation of the original
objective, i.e. the approximation error is small. A problem in using such a majorizing function
is that the simplified problem is still difficult to solve, which can be solved by another convex
relaxed sparse approximation method. An alternative is to majorize with a weighted ℓ2, see for
example [13], which simplifies the problem to a quadratic optimization problem and lets us to
solve it analytically. In this framework the algorithm is sometimes called Iterative Reweighting
Least Square (IRLS), but it only refers to a sub-class of algorithms in this class.

If the quadratic majorizing function for ℓp : p < 1 satisfies following conditions, the opti-
mization problem becomes more tractable.

1. Decoupled, to make the optimization easier.

2. Even, to follow the original objective, which is even.

3. Has the same tangent space at x[n]: to majorize ℓp |x[n]

The quadratic function which satisfies these conditions can be presented as p
2

∑

i∈[1,N ]wix
2
i ,

where wi’s are some weights which can be found by [14],

wi = |x[n]

i |p−2, (2.30)
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and by [16],
wi = (|x[n]

i | + ǫ)p−2, (2.31)

for the ǫ-relaxed ℓp. If x[n]

i = 0 in (2.30), we let it to being zero in the following iterations. The
surrogate objective can be found as follows,

ψ(x,x[n]) ∝ ‖y − Dx‖2
2 +

pλ

2

∑

i∈[1,N ]

wix
2
i . (2.32)

As we have only quadratic terms, the minimizer of the surrogate objective can be found by,

x[n+1] = W−1DT (DW−1DT + λI)−1y, (2.33)

where W = diag({wi}i∈[1,N ]). We need to invert a large matrix to calculate x[n+1], which is
not computationally possible for a large size problem. Similar to reweighted ℓ1 approach, one
can majorize the approximation error with a decoupled quadratic term and minimize the new
majorizing function, which is equivalent to adaptively scaling each component of the Landweber
update a (2.17), see [79,80].

2.3.4 Other Sparse Approximation Methods

In the convex relaxed sparse approximation using iterative thresholding, it was mentioned that
some non-differentiable and unconstrained optimization problems can be reformulated as the
constrained differentiable problems (2.19). The new formulation is favorable to be solved using
a quadratic programming and interior point method [8]. Recently the interior point method
has also been used directly to solve ℓ1 regularized sparse approximation problem [81]. Kim et
al. [81] used the primal logarithmic barrier method to solve the following equivalent problem,

min
x

‖Dx − y‖2
2 + λ

∑

i∈I

ui, s. t. ∀i ∈ I − ui ≤ xi ≤ ui, (2.34)

using a truncated Newton’s method. The method uses an equality found using the dual form of
(2.34) to simplify the problem and find an ǫ-suboptimal solution, where ǫ is the target duality
gap. This technique can also be extended to the medium to large scale problems by solving the
Newton system approximately.

Most of the sparse approximation methods based on the gradient projection technique con-
verge very slowly if λ is small. However such a small λ is interesting when the approximation
error has to be small. In this case one can adaptively change λ, by starting from a large value,
and accelerate the gradient projection method, see [70]. The gradient projection technique can
also be applied to solve the LASSO problem. See (1.9) [82] in which Van den Berg et al. showed
a relation between Basis Pursuit (BP), LASSO and Basis Pursuit DeNoising (BPDN)10 prob-
lems, i.e. by choosing correct parameters, the problems share the solutions. This fact helps us
to solve these problems using a gradient projection method, if the relation between the param-
eters are known. A method for solving such problems, by iteratively turning them to LASSO
problems with different τ , has been presented in [82].

As sparse approximation is formulated using an optimization problem, almost any optimiza-
tion techniques can be applied to solve it. This chapter only covered common and potentially
fast and scalable algorithms.

10Here, it is also called convex relaxed sparse approximation.
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Chapter 3

Scalable Algorithms

This chapter reviews the comparative performance of previously mentioned algorithms. The
issues in scalability of the algorithm, which cause computationally expensive operations, will
be surveyed first. The algorithms that need such operations, e.g. matrix inversion, will then be
highlighted. These algorithms are not scalable in the original form and need some modifications
to moderate the complexity. As the aim of this report is to point out potentially scalable
methods, such sparse approximation algorithms will be emphasized in subsection 3.2.

3.1 Scalability issues

This section reviews the operations which are not easily scalable. It also mentions how one
can implemented some of them more efficiently by applying some modifications to the original
operations.

3.1.1 Unstructured dictionaries

The linear generative model of the sparse signals, i.e. dictionary, can have a structure which
allows a fast implementation. These dictionaries are often generated by subsampling an orthog-
onal basis in the ambient space as the row of the dictionary or the oversampling a particular
parametric functional, e.g. Fourier functional, in the signal space. The dictionary is here called
unstructured if the atoms are generated independently and there is no model for generating the
atom. An example of such dictionaries is the typical learned dictionary, which is found using
a dictionary learning algorithm, see for example [83] and references therein. These dictionaries
are hardly implemented efficiently. The implementation of such dictionaries is O(dN), where
d ≤ N and N are the signal and dictionary sizes respectively. In contrast, some dictionary
structures allow us to implement the dictionary more efficiently, e.g. O(d log(N)) and O(N).

If the algorithm uses the D and D∗ operators, each operation can be implemented block
wise, with some extra operations. In this framework, the matrix and the operand vector are
divided into k2, k > 1, submatrices and k blocks respectively. Each dictionary submatrix is
multiplied with the corresponding block of the operand. The dictionary-vector multiplication is
then found by adding corresponding components of the submatrix multiplications. Note: this
operation does not reduce the complexity of the dictionary implementation, but it lets us use a
multicore processing and use the memory wisely.

21



3.1.2 Matrix inversion

Sometime we need to invert a matrix in sparse approximation methods, e.g. for projecting a
signal onto a certain subspace. This operation is computationally expensive. It was mentioned
in 3.1.1 that, if the dictionary is unstructured, the dictionary can be implemented in a parallel
framework. Unfortunately the matrix inversion can not easily be implemented in a parallel
setting1. If the matrix inversion can be approximated by other simpler matrix operations,
the overall complexity of the algorithm reduces in practice. An example of such methods is
introduced in [85], which can be used when the dictionary is approximately block-orthogonal
and where we ignore the effect of the atoms with minimum energy in each block, in matrix
inversion of the block.

3.1.3 Ill-conditioned dictionaries

When the condition number of a dictionary is high2, some algorithms face a precision error.
This happens particularly when it needs to calculate (DDT )−1.

Another problem with using such an ill-conditioned dictionary in iterative algorithms, e.g.
iterative thresholding, is the slow convergence of the algorithms. Practical observations show
that the adaptive iterative thresholding algorithms are faster, using such ill-conditioned dictio-
naries. Although this issue is general and not related to the size of problem, the issue would be
more challenging in the large size problems. It should be noted however that when D is poorly
conditioned, the quality of the sparse approximation is generally questionable.

3.1.4 Projection onto a set

It was shown that a large class of relaxed sparse approximation methods is based on the gradient
projection technique. Although the projection onto an arbitrary set is not easy to find, such
a projection is possible for the sets typically used. The ℓ1 convex ball is the common set
in the sparse approximation/representation context. Different methods have been presented to
project a point onto this convex set [70,86]. An optimal projection might accelerate the iterative
algorithm, as this operation is used at each iteration.

3.2 Comparative study

The greedy and gradient projection methods will be compared separately in this section. The
reason is that these methods are structurally different and the comparison of these methods
are not easy, as they seek different solutions. The greedy methods are introduced to find a
reasonably sparse signal. In contrast gradient projection methods reduce an objective to find a
fixed point3. In a special case where the objective is convex the solution is unique (with a mild
condition). In this special case we can fairly compare the algorithms, as they find the same
solution.

1By using block matrix inversion lemma [84], we can implement each matrix inversion by a series of smaller
matrix inversions. Although this lemma allows us to invert large scale matrices, it increases the computation
cost, as it needs consequent matrix inversions.

2The condition number of a matrix is the ratio of the largest to the smallest singular values, if ℓ2 is the norm
of the vector space.

3The fixed points of these algorithms are not necessarily local minima.
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Table 3.1: Table I of the reference [5].

3.2.1 Greedy methods

It was mentioned in Section 2.2 that the computational complexity of the pursuit methods
increases if they use extra operations, e.g. projection onto the solution space in OMP and
OLS, and using modified Gram-Schmidt method to project atoms onto the complement of the
selected atoms span. Although these operations are of order O(n3), they are significantly more
expensive than a simple matrix-matrix multiplication, which has the same order of complexity,
when the matrices are unstructured. To overcome the extra complexity, one approach is to
use a relaxed pursuit algorithm, e.g. GP. These methods only use some steps of the gradient
or the conjugate-gradient descent. Although the new relaxed algorithm does not satisfy the
nice features of the derived algorithm, e.g. OMP and OLS, the residual error decays faster in
practice. The computational complexity of each iteration and the memory usage of different
algorithms are presented in [5], which is shown here in Table 3.1. In this table, M , N and n are
the dimension of signal and coefficient spaces and the iteration number respectively and Φ is the
computational complexity of applying D or DT . Here OMP QR, OMP Cholesky and ACGP
respectively stand for OMP using QR and Cholesky factorization and Approximate Conjugate
Gradient Pursuit. It is clear from this table that the algorithms scale differently by scaling the
problem size and the number of iterations. This emphasizes on the fact that the scalability of
such greedy algorithms depends on the problem setting, i.e. the dictionary size, the sparsity of
the approximation and the complexity of the dictionary/transposed-dictionary multiplications.

Although the comparative study of the computational cost and memory usage of the greedy
methods are useful, such a study can not be fair as these methods are not proposed to do similar
task and the sparse solutions are often different. With this respect a comparison between these
methods is relevant if we only consider an application with a given setting, i.e. size of the
problem. Therefore to investigate the scalability of the greedy methods, one approach is to
consider a single application and compare the performance/complexity plots.

3.2.2 Relaxed sparse approximation methods

The analysis of the computational complexity of sparse approximation methods based on mini-
mizing a convex objective is very important, as it has directly been used in many applications,
e.g. Compressed Sensing and denoising, and indirectly been used in other sparse approximation
methods, e.g. re-weighted ℓ1, as an intermediate step. A comparative study with this set-
ting is fair, as the minimizer of objective is unique. Hence we can compare the computational
complexity and memory usage of each algorithm. In contrast, comparison of other non-convex
relaxed sparse approximation methods are difficult, as they find different sparse solutions. The
iterative re-weighted algorithms generally include, for example, K iterative solving of another
convex problem. Although the computational cost is roughly K times greater, the solutions are
sparser in practice, i.e. fewer non-zero coefficients. There is thus a compromise between the
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algorithm complexity and the sparsity of solution.
Here the complexity of convex sparse approximation methods, base on minimizing (1.10), will

be compared. Loris presented a fair approach to compare the complexity of these methods [87].
Let λmax be the smallest value of λ that the solution of (1.10) is zero and x̄ and x(n) respectively
be the optimum solution and the coefficient vector at nth iteration. In Figure 6 of [87], the
normalized sparse approximation error, ‖x(n) − x̄‖/‖x̄‖, is plotted versus different log2 λmax/λ.
To compare the convergence of different algorithms, Loris calculated the plots after certain
simulation times, here t = 6k sec, k ∈ [1, 10]. A Gaussian random dictionary D ∈ R1848×8192,
which is clearly a well-conditioned dictionary, has been used in these simulations. Two non-
adaptive iterative thresholding methods, see subsection 2.3.2.1, with c > ‖D‖ [43], and c >
1
2‖D‖ [20], and four adaptive iterative thresholding methods, accelerated projected gradient [70],
Gradient Projection for Sparse Representation (GPSR) [24], ℓ1-ls [81] and FISTA [45], were
compared in [87]. An ideal plot with this setting is a plot which tends to the lower-right corner
of the plot, which means the algorithm converges fast and the final error is low. It is shown
that FISTA converges faster than other methods, but the final error is higher than some others,
e.g. accelerated projected gradient and ℓ1-ls, when the optimal solution is not very sparse.

If these simulations are repeated with a dictionary which is not well-conditioned, the algo-
rithms converge slower. For such a dictionary, taken from a Geo-science inverse problem, the
performance plots are shown in Figure 4 of [87]. As the algorithms converge slower, the plots are
shown after running t ∈ [1, 10] minutes of simulations. Again we observe that FISTA performs
better than the others in this experiment.

These experiments only considered some fast ℓ1 sparse approximation methods. Recently
other algorithms based on parameter splitting and augmented Lagrange multipliers method
[88, 89] have been introduced which are claimed to be faster than the introduced methods.
Although the new algorithm, called SALSA, shows a promising performance in practice, there
is no analytical study on the convergence and the rate of convergence so far.
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Chapter 4

Conclusions

The sparse coding problem was formulated here by introducing some sparsity measures and
the related optimization problems which should be minimized. In this framework, the solution
space of an underdetermined linear system was constrained to the solutions with the minimal
non-zero coefficients. The formulations were then extended to the matrix vector space, which
facilitate the sparse coding of a set of signals or promote a structured sparsity pattern within
the matrix. As the sparse approximation is one step of an alternating minimization algorithm
for dictionary learning, these formulations also appear where the dictionary learning problem
is formulated.

In the second chapter, the Greedy and Gradient (Projection) based sparse approximation
methods were reviewed. In the first part, some greedy algorithms, mainly MP and its extensions,
were explained and the relation between them were explored. The computational complexity of
the algorithms increases if all coefficients have often to be updated. The complexity of OLS is
very high as it has one orthogonal projection and one Modified Gram-Schmidt at each iteration.
Therefore it would not be considered as a scalable algorithm.

The gradient projection and majorization minimization methods have often been used to
solve relaxed sparse approximation problem, where it is changed to be more tractable or an
approximate solution is sought. Most important derivations of these techniques for sparse
approximation were explored here. As the computational complexity of each iteration is mod-
erately low, these methods are good candidates for scalable problems, if the algorithms also
converge fast. For ℓ1 relaxed sparse approximation, the optimal first-order gradient methods
have been shown to have a better upper bound on the convergence rate than the other (non-)
adaptive gradient projection methods. On the other hand, although iterative reweighting algo-
rithms can not guarantee to find the optimal solution of ℓp : p < 1, they converge very fast into
a basin of attraction. Further analytical or empirical investigation on the rate of convergences
of these gradient projection based methods is necessary.

In chapter 3, the challenges in using sparse approximation method for a large scale problem
were reviewed. These might make the sparse approximation of a scalable problem impossible or
very slow. Some comparative studies have been discussed in Section 3.2. Although comparing
the computation complexity and memory usage of the methods, which find different solutions,
are not completely fair, an order comparison for greedy methods was presented here. This
comparison would be helpful if we are interested to make a compromise between the compu-
tational complexity and memory usage of the algorithm and sparsity of the approximations.
The observation is that the order of complexity of the algorithms are different using structured
dictionaries, i.e. the dictionaries which can be implemented in O(n log(n)). Otherwise the dic-
tionary multiplication is the most expensive part of the implementation and the computational
complexity of MP, OMP and GP are roughly the same (per iteration). In practice when the
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dictionary is fast, it has been observed that ACGP is faster than OMP, while it provides similar
sparse solutions.

A more sophisticated comparison between ℓ1 sparse approximation methods was explained
here. Some of the fast iterative thresholding type methods were compared by exploring their
convergence times and approximation errors using a well-conditioned and an ill-conditioned
dictionary. Although we can not give a general statement about the algorithms, FISTA, which
is an optimal first order gradient method, shows slightly better performance than the best of
other methods.

This report only pointed out the issues in using sparse approximation for a large scale
problem. A scalable algorithm in general should be able to use a parallel computation framework
and use less memory. These make each iteration of the algorithm tractable in a large scale setup.
It also needs to converge fast to reduce the total computation time. Therefore the algorithms
with better rate of convergence, e.g. optimal first-order gradient methods, are good candidates
as the scalable sparse approximation methods. The complexity of these algorithms further
reduces if each iteration can be broken down into smaller independent blocks of computations,
which allows parallel computation. A further research on parallelization of such algorithms and
specifically its implementation on the Graphical Processing Units (GPU), which have advanced
parallel structures, is necessary in order to practically implement such sparse approximation
methods using a large scale setting.
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