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Sparse Coding

Generative model

y = Dx + ν

y ∈ Rd , D ∈ Rd×N ,
x ∈ RN and ν ∈ Rd .
Under-determined
generative model

⇔ d < N
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sparse coding: x̂ = arg minx ‖x‖0 s. t. ‖y −Dx‖2 ≤ ξ,

ξ = 0 called sparse representation.

ξ > 0 called sparse approximation.
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Dictionary Selection Methods

Concatenation of orthonormal bases:Let O be the set of all
orthonormal dictionaries in Rd×d . D = {Di}i∈I ,∀i ∈ I,Di ∈ O is
given. A dictionary D in Rd×d|I| is generated using,

D = [D1 · · ·Di · · ·D|I|].

Dictionary design subject to a certain property:These properties
include, but not restrict to, Restricted Isometry Property (RIP),
minimum coherence µ and minimum cumulative coherence µ1(m).

Dictionary learning using a set of training samples: The goal is to
find a dictionary such that it provides sparser coding for the given
class of signals.
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Dictionary Learning for Sparse Approximations

Definition

Let a set of training samples L = {yi}i∈I be given. Find a
dictionary D ∈ Rd×N such that any training sample yi has a sparse
approximate representation xi ∈ RN as follows,

yi ≈ Dxi .
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Dictionary Learning for Sparse Approximations
as an optimization problem

Dictionary Learning for Sparse Approximations

The sparsity measure J (A) =
∑

i ,j |ai ,j |ρ, ρ≤1 and λ ∈ R+ is given.

arg min
D
{min

X
φ(D,X)}

φ(D,X) = ‖Y −DX‖2
F + λJ (X)

Difficulties:

Scale Ambiguity: ∀(α < 1) ∈ R+, φ( 1
αD, αX) ≤ φ(D,X)

Solution: Constrained optimization, D ∈ D, where D is, for
example, the constrained column or Frobenius norm dictionaries.

Model Order Ambiguity: In model Yd×L ≈ Dd×N XN×L, d and L
are given and N is unknown in general.

Solution: (our contribution) Applying a constraint on the dictionary
size → learning a minimum size dictionary.
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Parsimonious Dictionary Learning

Parsimonious Dictionary Learning: Formulation

arg min
D∈D
{min

X
φ(D,X)}

φ(D,X) = ‖Y−DX‖2
F + λJ1,1(X) + θJ1,q(DT )

Admissible Sets

Bounded Frobenius-norm
Dictionaries,

D = {Dd×N : ||D||F ≤ c 1/2

F }

Bounded Column-norm
Dictionaries,

D = {Dd×N : ||di ||2 ≤ c 1/2

C }

Sparsity Measures

Jp,q(A) =
∑
i∈I

[
∑
j∈J

|aij |q]
p
q

p ≤ 1 ≤ q

J1,1(A) = ‖A‖`1

J1,2(A): `1 norm of the `2

norms of the rows.
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Parsimonious Dictionary Learning Algorithm

Parsimonious Dictionary Learning

arg min
D∈D
{min

X
φ(D,X)}

φ(D,X) = ‖Y−DX‖2
F + λJ1,1(X) + θJ1,2(DT )

D convex set → φ(D,X) is bi-convex, i.e. convex w.r.t each
parameter, when the other is kept fixed.

φ(D,X) can be minimized using alternating minimization technique.

Optimization w.r.t each parameter can be done using convex
optimization methods → Majorization Minimization Method.

The quadratic term ‖Y −DX‖2
F couples the components of D and

X such that the element-wise optimization of φ(D,X) becomes
difficult. Majorization minimization simplifies the optimization by
de-coupling the quadratic term.
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Majorization Method

Majorization minimization method: replacing the original objective
φ(ω) with the surrogate majorizing objective ψ(ω, ξ) .

Optimization problem

min
ω∈Ω

φ(ω)

c ≤ φ(ω)

Majorizing objective

φ(ω) ≤ ψ(ω, ξ) ∀ω, ξ ∈ Ω

φ(ω) = ψ(ω, ω) ∀ω ∈ Ω

Two-step optimization

1- ωnew = arg minω∈Ω ψ(ω, ξ), fixed ξ
2- ξnew = ω = arg minξ∈Ω ψ(ω, ξ), fixed ω

I The surrogate objective can be found by adding a strictly convex
function, with a minimum at ω = ξ, to the original objective.
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Update formula for X

Let φD(X) be the objective while D is kept fixed.

The function πX(X,X[n]) := cX ||X−X[n]||2F −||DX−DX[n]||2F , which
is strictly convex for a selected cX and has a minimum at X = X[n],
is added to φD(X) to generate the surrogate objective ψD(X,X[n]).

ψD(X,X[n]) is convex w.r.t X and 0 is in the subgradient at the
minimum.

0 ∈ ∂ψD(X[n+1],X[n]),

∂ψD(X,X[n]) = 2cXX− 2(DT (Y −DX[n])

+ cXX[n]) + λ∂J1,1(X),

∴ X[n+1] = Sλ/2{A}

A =
1

cX

(DT (Y −DX[n]) + cXX[n])
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Update formula for D

Let φX(D) be the objective while X is kept fixed.

The surrogate objective:

ψX (D,D[n]) = φX(D) + πD(D,D[n]),

πD(D,D[n]) := cD ||D−D[n]||2F − ||DX−D[n]X||2F

ψX(D,D[n]) is convex w.r.t D and 0 is in the subgradient at the
minimum.

0 ∈ ∂ψX(D
[n+1],D[n]),

∂ψX(D,D
[n]) = 2cDD− 2((Y −D[n]X)XT

+ cDD[n]) + θ ∂J1,2(D
T )

∴ D[n+1] = PD{B∗}
B∗ = O θ

cD

{B}

B =
1

cD

((Y −D[n]X)XT + cDD[n])
tan(α) =

(
1− θ

2cD ||bj ||2
θ

2cD
< ||bj ||2

0 otherwise
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Simulations: Exact Dictionary Recovery
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√

N}

3 3.5 4 4.5 5 5.5 6 6.5 7

0

20

40

60

80

100

E
xa

ct
 R

ec
ov

er
y 

%
 

3 3.5 4 4.5 5 5.5 6 6.5 7
25

30

35

40

D
ic

tio
na

ry
 S

iz
e

Sparsity

12 / 17

Parsimonious Dictionary Learning



Dictionary Learning for Audio Coding

d N L D T D[0] X[0]

1024 2048 8192 ‖D‖F ≤
√

N 5000 2× DCT 0

λ = 0.01 θ = 0.01
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Number of Appearances of Learned Atoms in
the Approximations
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Rate-Distortion of the Audio Coding using
Different Dictionaries
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Conclusion and Future Work
Conclusion

A new framework for dictionary learning, under a minimum order
constraint, was presented.

A practical algorithm was presented to approximately solve the
non-convex optimization problem.

By some simulations, on the synthetic data, it has been shown that
the algorithm recovers correct atoms and correct dictionary size .

The learned dictionary, using samples of audio signals, has shown a
superior performance in the sparse audio coding, in terms of
Rate-Distortion.

Future Work

I Finding an automatic method to adjust θ.

I Extending the framework to a parsimonious dictionary selection.

I Using an alternative, and non-convex, sparsity measure.
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Thanks for your attention.

Any questions?
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