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Sparse Coding

Generative model

y=Dx+v —— -
n di1 dik di,n
y € R4 D e RIXN, y2| |dea ok .y
x € RN and v € R, £ | I T :
Under-determined d] [da da da,n
generative model

Sd< N

@ sparse coding: X = argmin, [|x|lo s.t. ||y — Dx|*> < ¢,
@ ¢ =0 called sparse representation.

@ ¢ > 0 called sparse approximation.




Dictionary Selection Methods

@ Concatenation of orthonormal bases:Let O be the set of all
orthonormal dictionaries in R4, D = {D,};c7,Vi € Z,D, € O is
given. A dictionary D in R¥*¥?! is generated using,

D=[D,---D,---D].

@ Dictionary design subject to a certain property:These properties
include, but not restrict to, Restricted Isometry Property (RIP),

minimum coherence p and minimum cumulative coherence p,(m).

@ Dictionary learning using a set of training samples: The goal is to
find a dictionary such that it provides sparser coding for the given
class of signals.
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Dictionary Learning for Sparse Approximations

Definition

Let a set of training samples .Z = {y, },cr be given. Find a
dictionary D € R?*N such that any training sample y; has a sparse
approximate representation x; € RV as follows,

yi = DX,‘.
o v v ——
D X W“jp:
3 P

m“
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Dictionary Learning for Sparse Approximations
as an optimization problem

Dictionary Learning for Sparse Approximations

The sparsity measure J(A) =}, ; |ajj|’, p<1 and A € R* is given.
in{min ¢(D, X
arg min{min ¢(D, X)}
¢(D,X) = [|Y = DX||g + AT (X)

Difficulties:
@ Scale Ambiguity: V(o < 1) € RY, ¢(1D, aX) < ¢(D, X)
° Constrained optimization, D € D, where D is, for

example, the constrained column or Frobenius norm dictionaries.

@ Model Order Ambiguity: In model Ygx; ~ Dgxn Xyxr, d and L
are given and N is unknown in general.

° (our contribution) Applying a constraint on the dictionary
size — learning a minimum size dictionary.
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Parsimonious Dictionary Learning
Parsimonious Dictionary Learning: Formulation
arg min {min (D, X)}
¢(D,X) = |[Y=DX||Z + AT1,1(X) + 071,4(D")

Admissible Sets Sparsity Measures

@ Bounded Frobenius-norm

Dictionaries, Tl = Z[Z |aij|q]g

D = {Dgxn : ||D||r < ¢*} iel jeJ
p<1<gq
@ Bounded Column-norm
Dictionaries, o J11(A) =||Allg,
D = {Dgxn : ||di|]2 < ¢*} @ J12(A): 1 norm of the {,

norms of the rows.
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Parsimonious Dictionary Learning Algorithm

Parsimonious Dictionary Learning

arg min{min (D, X)}

¢(D,X) = |[Y=DX||2 + \J1,1(X) + 6.71(D")

@ D convex set — ¢(D, X) is bi-convex, i.e. convex w.r.t each
parameter, when the other is kept fixed.

@ ¢(D, X) can be minimized using alternating minimization technique.

@ Optimization w.r.t each parameter can be done using convex
optimization methods — Majorization Minimization Method.

@ The quadratic term ||Y — DX||2 couples the components of D and
X such that the element-wise optimization of ¢(D, X) becomes
difficult. Majorization minimization simplifies the optimization by
de-coupling the quadratic term.
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Majorization Method

Majorization minimization method: replacing the original objective
¢(w) with the surrogate majorizing objective 1)(w, &) .

Optimization problem Majorizing objective
mip o) B(w) < B(w,€) Vw,E€Q
c < ¢p(w) P(w) =(w,w) YweQ

Two-step optimization

1_ Whew = arg mianQ iﬂ(w,f), fIXed 5

2- Lpew =w = argmingeq ¢Y(w, &), fixed w

» The surrogate objective can be found by adding a strictly convex
function, with a minimum at w = &, to the original objective.
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Update formula for X

@ Let ¢p(X) be the objective while D is kept fixed.

@ The function 7, (X, XI") = ¢ [|[X — X712 — | |DX — DXl |Z, which
is strictly convex for a selected ¢, and has a minimum at X = X,
is added to ¢(X) to generate the surrogate objective 1 (X, X[]).

@ (X, XI[") is convex w.r.t X and 0 is in the subgradient at the

minimum.
0c a¢D(X[n+1]7)([n])’ A
(X, XIM) = 26X — 2(D(Y — DXI") Syo{Aky
+ CXX[”]) + A0T1.1(X),
S X Z s, TA) T/T "

A= l(DT(Y — DXI") 4 g XxI")

Cx
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Update formula for D

@ Let ¢«x(D) be the objective while X is kept fixed.

@ The surrogate objective:
¥x(D, D) = ¢y (D) + 7o (D, D),
mo(D, D) := ¢,||D — DIM||2 — ||DX — DI"IX|[2

@ (D, DI") is convex w.r.t D and 0 is in the subgradient at the

minimum.
« "r/%',»"
0¢c 8wX(D[n+1]7 D[n])7 b ‘
dx(D, D) = 2¢,D — 2((Y — DIIX)X” B
+ D) + 60 8712(D") b,
D[n+1] _ B*
B* =0, {B}
D
1
_ [n] T [n] __ 6 0 .
B = _—((Y - D"X)X" + D) san() = | L~ i 2 < 1Bl
0 otherwise
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Exact Recovery %

Dictionary Size
I

I
S

Simulations: Exact Dictionary Recovery
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Dictionary Learning for Audio Coding
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Number of Appearances of Learned Atoms in
the Approximations

6000

5000}

30001

2000+

10001

Number of appearances in the approximations

0 200 400 600 800 1000 1200
Atom index number

L=8192 A=0.01

14 /17



Rate-Distortion of the Audio Coding using
Different Dictionaries

Rate—Distortion

SNRin dB

—— Learned dictionaries|-
—DCT
—— 2X DCT dictionary
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Conclusion and Future Work
Conclusion

@ A new framework for dictionary learning, under a minimum order
constraint, was presented.

@ A practical algorithm was presented to approximately solve the
non-convex optimization problem.

@ By some simulations, on the synthetic data, it has been shown that
the algorithm recovers correct atoms and correct dictionary size .

@ The learned dictionary, using samples of audio signals, has shown a
superior performance in the sparse audio coding, in terms of
Rate-Distortion.

» Finding an method to adjust 6.
> Extending the framework to a parsimonious dictionary selection.

» Using an alternative, and non-convex, sparsity measure.

16



Thanks for your attention.

Any questions?

Parsimonious Dictionary Learning




	Introduction
	Sparse Coding
	Dictionary Selection Methods
	Dictionary Learning for Sparse Approximations

	Parsimonious Dictionary Learning (PDL)
	Formulation
	Algorithm
	Update formula for X
	Update formula for D

	Simulations
	Synthetic Data
	PDL for Sparse Audio Coding

	Conclusion and Future Work

