Parsimonious Dictionary Learning

Mehrdad Yaghoobi, Thomas Blumensath, Mike E. Davies

Institute for Digital Communications, School of Engineering, The University of Edinburgh, UK

ICASSP09, April 21, 2009

Parsimonious Dictionary Learning

Outline

Introduction

- Sparse Coding
- Dictionary Selection Methods
- Dictionary Learning for Sparse Approximations

2 Parsimonious Dictionary Learning (PDL)

- Formulation
- Algorithm
- Update formula for X
- Update formula for D

3 Simulations

- Synthetic Data
- PDL for Sparse Audio Coding

4 Conclusion and Future Work

Sparse Coding

- sparse coding: $\widehat{\mathbf{x}} = \arg \min_{\mathbf{x}} \|\mathbf{x}\|_0 \text{ s.t. } \|\mathbf{y} \mathbf{D}\mathbf{x}\|^2 \le \xi,$
- $\xi = 0$ called sparse representation.
- $\xi > 0$ called sparse approximation.

Dictionary Selection Methods

Concatenation of orthonormal bases:Let O be the set of all orthonormal dictionaries in ℝ^{d×d}. D = {D_i}_{i∈I}, ∀i ∈ I, D_i ∈ O is given. A dictionary D in ℝ^{d×d|I|} is generated using,

$$\mathbf{D} = [\mathbf{D}_1 \cdots \mathbf{D}_i \cdots \mathbf{D}_{|\mathcal{I}|}].$$

- Dictionary design subject to a certain property: These properties include, but not restrict to, Restricted Isometry Property (RIP), minimum coherence μ and minimum cumulative coherence μ₁(m).
- *Dictionary learning using a set of training samples:* The goal is to find a dictionary such that it provides sparser coding for the given class of signals.

Dictionary Learning for Sparse Approximations

Definition

Let a set of training samples $\mathscr{L} = \{\mathbf{y}_i\}_{i \in \mathcal{I}}$ be given. Find a dictionary $\mathbf{D} \in \mathbb{R}^{d \times N}$ such that any training sample \mathbf{y}_i has a sparse approximate representation $\mathbf{x}_i \in \mathbf{R}^N$ as follows,

 $\mathbf{y}_i \approx \mathbf{D}\mathbf{x}_i$.

Dictionary Learning for Sparse Approximations as an optimization problem

Dictionary Learning for Sparse Approximations The sparsity measure $\mathcal{J}(\mathbf{A}) = \sum_{i,j} |a_{i,j}|^{\rho}$, $\rho \leq 1$ and $\lambda \in \mathbb{R}^+$ is given. $\arg\min_{\mathbf{D}} \{\min_{\mathbf{X}} \phi(\mathbf{D}, \mathbf{X})\}$ $\phi(\mathbf{D}, \mathbf{X}) = \|\mathbf{Y} - \mathbf{DX}\|_{\mathbf{F}}^2 + \lambda \mathcal{J}(\mathbf{X})$

Difficulties:

- Scale Ambiguity: $\forall (\alpha < 1) \in \mathbf{R}^+$, $\phi(\frac{1}{\alpha}\mathbf{D}, \alpha \mathbf{X}) \le \phi(\mathbf{D}, \mathbf{X})$
- Solution: Constrained optimization, D ∈ D, where D is, for example, the constrained column or Frobenius norm dictionaries.
- Model Order Ambiguity: In model $\mathbf{Y}_{d \times L} \approx \mathbf{D}_{d \times N} \mathbf{X}_{N \times L}$, d and L are given and N is unknown in general.
- *Solution:* (our contribution) Applying a constraint on the dictionary size → learning a minimum size dictionary.

Parsimonious Dictionary Learning

Parsimonious Dictionary Learning: Formulation

$$\begin{split} &\arg\min_{\mathbf{D}\in\mathcal{D}}\{\min_{\mathbf{X}}\phi(\mathbf{D},\mathbf{X})\}\\ \phi(\mathbf{D},\mathbf{X}) = \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_{\mathbf{F}}^2 + \lambda\mathcal{J}_{1,1}(\mathbf{X}) + \theta\mathcal{J}_{1,q}(\mathbf{D}^{\mathsf{T}}) \end{split}$$

Admissible Sets

• Bounded Frobenius-norm Dictionaries,

$$\mathcal{D} = \{\mathbf{D}_{d \times N} : ||\mathbf{D}||_F \le c_F^{1/2}\}$$

• Bounded Column-norm Dictionaries,

$$\mathcal{D} = \{\mathbf{D}_{d \times N} : ||\mathbf{d}_i||_2 \le c_c^{1/2}\}$$

Sparsity Measures

$$egin{aligned} \mathcal{J}_{
ho,q}(\mathbf{A}) &= \sum_{i\in I} [\sum_{j\in J} |a_{ij}|^q]^{rac{p}{q}} \ p &\leq 1 \leq q \end{aligned}$$

•
$$\mathcal{J}_{1,1}(\mathsf{A}) = \|\mathsf{A}\|_{\ell_1}$$

• $\mathcal{J}_{1,2}(\mathbf{A})$: ℓ_1 norm of the ℓ_2 norms of the rows.

Parsimonious Dictionary Learning Algorithm

Parsimonious Dictionary Learning

$$\begin{split} &\arg\min_{\mathbf{D}\in\mathcal{D}}\{\min_{\mathbf{X}}\phi(\mathbf{D},\mathbf{X})\}\\ \phi(\mathbf{D},\mathbf{X}) = \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_{\mathbf{F}}^2 + \lambda\mathcal{J}_{1,1}(\mathbf{X}) + \theta\mathcal{J}_{1,2}(\mathbf{D}^{\tau}) \end{split}$$

- \mathcal{D} convex set $\rightarrow \phi(\mathbf{D}, \mathbf{X})$ is bi-convex, i.e. convex w.r.t each parameter, when the other is kept fixed.
- $\phi(\mathbf{D}, \mathbf{X})$ can be minimized using alternating minimization technique.
- Optimization w.r.t each parameter can be done using convex optimization methods → Majorization Minimization Method.
- The quadratic term ||**Y DX**||²_F couples the components of **D** and **X** such that the element-wise optimization of φ(**D**, **X**) becomes difficult. Majorization minimization simplifies the optimization by de-coupling the quadratic term.

Majorization Method

Majorization minimization method: replacing the original objective $\phi(\omega)$ with the surrogate majorizing objective $\psi(\omega,\xi)$.

Optimization problem	
$egin{aligned} \min_{\omega\in\Omega}\phi(\omega)\ c&\leq\phi(\omega) \end{aligned}$	

Majorizing objective $\phi(\omega) \le \psi(\omega, \xi) \quad \forall \omega, \xi \in \Omega$ $\phi(\omega) = \psi(\omega, \omega) \quad \forall \omega \in \Omega$

Two-step optimization

1-
$$\omega_{new} = \arg \min_{\omega \in \Omega} \psi(\omega, \xi)$$
, fixed ξ
2- $\xi_{new} = \omega = \arg \min_{\xi \in \Omega} \psi(\omega, \xi)$, fixed ω

The surrogate objective can be found by adding a strictly convex function, with a minimum at ω = ξ, to the original objective.

Update formula for X

- Let $\phi_{D}(\mathbf{X})$ be the objective while **D** is kept fixed.
- The function $\pi_{\mathbf{X}}(\mathbf{X}, \mathbf{X}^{[n]}) := c_{\mathbf{X}} ||\mathbf{X} \mathbf{X}^{[n]}||_{F}^{2} ||\mathbf{D}\mathbf{X} \mathbf{D}\mathbf{X}^{[n]}||_{F}^{2}$, which is strictly convex for a selected $c_{\mathbf{X}}$ and has a minimum at $\mathbf{X} = \mathbf{X}^{[n]}$, is added to $\phi_{\mathbf{D}}(\mathbf{X})$ to generate the surrogate objective $\psi_{\mathbf{D}}(\mathbf{X}, \mathbf{X}^{[n]})$.
- ψ_D(X, X^[n]) is convex w.r.t X and 0 is in the subgradient at the minimum.

$$\mathbf{0} \in \partial \psi_{\mathsf{D}}(\mathsf{X}^{[n+1]}, \mathsf{X}^{[n]}),$$

$$\partial \psi_{\mathsf{D}}(\mathsf{X}, \mathsf{X}^{[n]}) = 2c_{\mathsf{x}}\mathsf{X} - 2(\mathsf{D}^{\mathsf{T}}(\mathsf{Y} - \mathsf{D}\mathsf{X}^{[n]}))$$

$$+ c_{\mathsf{x}}\mathsf{X}^{[n]} + \lambda \partial \mathcal{J}_{1,1}(\mathsf{X}),$$

$$\therefore \mathsf{X}^{[n+1]} = \mathcal{S}_{\lambda/2}\{\mathsf{A}\}$$

$$\mathbf{A} = \frac{1}{c_{\mathsf{x}}}(\mathsf{D}^{\mathsf{T}}(\mathsf{Y} - \mathsf{D}\mathsf{X}^{[n]}) + c_{\mathsf{x}}\mathsf{X}^{[n]})$$

Update formula for D

- Let φ_x(D) be the objective while X is kept fixed.
- The surrogate objective:

$$\begin{split} \psi_{\mathbf{X}}(\mathbf{D}, \mathbf{D}^{[n]}) &= \phi_{\mathbf{x}}(\mathbf{D}) + \pi_{\mathsf{D}}(\mathbf{D}, \mathbf{D}^{[n]}), \\ \pi_{\mathsf{D}}(\mathbf{D}, \mathbf{D}^{[n]}) &:= c_{\mathsf{D}} ||\mathbf{D} - \mathbf{D}^{[n]}||_{\mathsf{F}}^{2} - ||\mathbf{D}\mathbf{X} - \mathbf{D}^{[n]}\mathbf{X}||_{\mathsf{F}}^{2} \end{split}$$

ψ_x(D, D^[n]) is convex w.r.t D and 0 is in the subgradient at the minimum.

$$\mathbf{0} \in \partial \psi_{\mathbf{X}}(\mathbf{D}^{[n+1]}, \mathbf{D}^{[n]}),$$

$$\partial \psi_{\mathbf{X}}(\mathbf{D}, \mathbf{D}^{[n]}) = 2c_{D}\mathbf{D} - 2((\mathbf{Y} - \mathbf{D}^{[n]}\mathbf{X})\mathbf{X}^{T} + c_{D}\mathbf{D}^{[n]}) + \theta \ \partial \mathcal{J}_{1,2}(\mathbf{D}^{T})$$

$$\therefore \mathbf{D}^{[n+1]} = \mathcal{P}_{\mathcal{D}}\{\mathbf{B}^{*}\}$$

$$\mathbf{B}^{*} = \mathcal{O}_{\frac{\theta}{c_{D}}}\{\mathbf{B}\}$$

$$\mathbf{B} = \frac{1}{c_{D}}((\mathbf{Y} - \mathbf{D}^{[n]}\mathbf{X})\mathbf{X}^{T} + c_{D}\mathbf{D}^{[n]})$$

$$\tan(\alpha) = \begin{cases} 1 - \frac{\theta}{2c_{D}||\mathbf{b}_{j}||_{2}} & \frac{\theta}{2c_{D}} < ||\mathbf{b}_{j}||_{2} \\ 0 & otherwise \end{cases}$$

Parsimonious Dictionary Learning

Simulations: Exact Dictionary Recovery

 $\mathcal{D} = \{\mathbf{D}_{d \times N} : ||\mathbf{d}_i||_2 \le 1\}$

 $\mathcal{D} = \{\mathbf{D}_{d \times N} : ||\mathbf{D}||_F \le \sqrt{N}\}$

Dictionary Learning for Audio Coding

Number of Appearances of Learned Atoms in the Approximations

Parsimonious Dictionary Learning

Rate-Distortion of the Audio Coding using Different Dictionaries

Parsimonious Dictionary Learning

Conclusion and Future Work

Conclusion

- A new framework for dictionary learning, under a minimum order constraint, was presented.
- A practical algorithm was presented to *approximately* solve the non-convex optimization problem.
- By some simulations, on the synthetic data, it has been shown that the algorithm recovers correct atoms and correct dictionary size .
- The learned dictionary, using samples of audio signals, has shown a superior performance in the sparse audio coding, in terms of Rate-Distortion.

Future Work

- Finding an automatic method to adjust θ .
- Extending the framework to a parsimonious dictionary selection.
- ▶ Using an alternative, and non-convex, sparsity measure.

Thanks for your attention.

Any questions?

Parsimonious Dictionary Learning