Parametric Dictionary Design for Sparse Coding

Mehrdad Yaghoobi, Laurent Daudet, Mike E. Davies

IDCom, School of Engineering and Electronics
The University of Edinburgh, UK

SPARS09, April 7, 2009

Outline

- Introduction
 - Sparse Coding
 - Dictionary Selection Methods
 - Incoherent Dictionary
- 2 Parametric Dictionary Design (PDD)
 - PDD: Formulation
 - PDD: Algorithm
- Case Study
 - Gammatone Dictionary
 - Simulations: Algorithm Evaluation
 - Simulations: Sparse Audio Coding
- Conclusion and Future Work

Sparse Coding

Generative model

$$\mathbf{y} = \mathbf{D}\mathbf{x} + \boldsymbol{\nu}$$

 $\mathbf{y} \in \mathbb{R}^d$, $\mathbf{D} \in \mathbb{R}^{d \times N}$, $\mathbf{x} \in \mathbb{R}^N$ and $\nu \in \mathbb{R}^d$. Under-determined generative model

$$\Leftrightarrow d < N$$

$$\begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_d
\end{bmatrix} =
\begin{bmatrix}
d_{1,1} & d_{1,k} & d_{1,N} \\
d_{2,1} & d_{2,k} & d_{2,N} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
d_{d,1} & d_{d,k} & d_{d,N}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_k \\
\vdots \\
x_N
\end{bmatrix} +
\begin{bmatrix}
\nu_1 \\
\nu_2 \\
\vdots \\
\nu_d
\end{bmatrix}$$

- sparse coding: $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_0 \text{ s.t. } \|\mathbf{y} \mathbf{D}\mathbf{x}\|^2 \le \xi,$
- $\xi = 0$ called sparse representation.
- $\xi > 0$ called sparse approximation.

Dictionary Selection Methods

• Concatenation of orthonormal bases: Let \mathcal{O} be the set of all orthonormal dictionaries in $\mathbb{R}^{d \times d}$. $\mathcal{D} = \{\mathbf{D}_i\}_{i \in \mathcal{I}}, \forall i \in \mathcal{I}, \mathbf{D}_i \in \mathcal{O}$ is given. A dictionary \mathbf{D} in $\mathbb{R}^{d \times d|\mathcal{I}|}$ is generated using,

$$\mathbf{D} = [\mathbf{D}_1 \cdots \mathbf{D}_i \cdots \mathbf{D}_{|\mathcal{I}|}].$$

• Dictionary learning using a set of training samples $\mathcal{L} = \{\mathbf{y}_i\}_{i \in \mathcal{I}}$: The goal is to find a dictionary such that it provides sparser coding for the given class of signals. A general formulation for dictionary learning is,

$$\widehat{\mathbf{D}} = \arg\min_{\mathbf{D}} \sum_{\mathbf{z} \in \{\theta: \|\mathbf{y}_{\mathbf{i}} - \mathbf{D}\theta\|^2 \leq \xi\}} \|\mathbf{x}\|_0.$$

• Dictionary design subject to a certain property: These properties include, but not restrict to, Restricted Isometry Property (RIP), minimum coherence μ and minimum cumulative coherence $\mu_1(m)$.

Incoherent Dictionary

Coherence

The coherence of a dictionary \mathbf{D} is defined to be the maximum correlation of two distinct atoms and can be found using,

$$\mu_{\mathsf{D}} = \max_{i,j:j\neq i} \{ |\langle \mathbf{d}_i, \mathbf{d}_j \rangle| \}.$$

Incoherent dictionary: A dictionary is incoherent when μ_D is "small".

Equiangular Tight Frame (ETF)

A column normalized dictionary $\mathbf{D}_{\scriptscriptstyle G}$ is called ETF, when there is a $\gamma: 0<\gamma<\pi/2$, such that $|\langle \mathbf{d}_i,\mathbf{d}_j\rangle|=\cos(\gamma): \forall i,j\ i\neq j$. If there exists an ETF in $\mathbb{R}^{d\times N}$, it is the solution of $\arg\min_{\mathbf{D}\in\mathscr{D}}\{\mu_{\mathbf{D}}\}$, and for any $\mathbf{D}\in\mathbb{R}^{d\times N}$, $\mu_{\mathbf{D}}\geq\mu_{\scriptscriptstyle G}:=\sqrt{\frac{N-d}{d(N-1)}}$.

Parametric Dictionary

Parametric Dictionary

Let Γ be a set of parameters in the admissible set Υ .

 $\mathbf{D}_{\Gamma}: \Upsilon \to \mathbb{R}^{d \times N}$ is defined to be a mapping from the parameter space to the dictionary space.

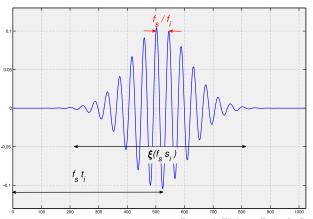
Given a mapping \mathbf{D}_{Γ} , a dictionary called Parametric Dictionary, when it is generated using a $\Gamma \in \Upsilon$.

Special Case: A special mapping \mathbf{D}_{Γ} is when it is column-separable. In this framework each atom \mathbf{d}_i is generated by a set of parameters γ_i . This type of mapping has often been used in sparse coding.

An example: Multi-scale Gabor Parametric Dictionary

The parameters in a real value multi-scale Gabor atom are scale, phase and the time-frequency shift and the generative function is Gaussian.

$$\mathbf{g}_{\gamma_i}(t) = a_i e^{\left(\frac{t-t_i}{s_i}\right)^2} \cdot \cos(2\pi f_i(t-t_i) + \phi_i)$$



Parametric Dictionary Design

Parametric Dictionary Design

Let \mathbf{D}_{Γ} , Υ and a certain dictionary property be given. Parametric Dictionary Design is how to find a $\Gamma^* \in \Upsilon$ such that \mathbf{D}_{Γ^*} (approximately) has such a property.

- Objective: Finding a dictionary close to being ETF.
- This search is easier to be done in the space of N by N real matrices, by finding the Gram matrix, $G_D := D^T D$, associated with the optimal parametric dictionary.
- Closeness measure: The infinity norm $\|.\|_{\infty}$ in $\mathbb{R}^{N\times N}$, which is the maximum absolute value of the elements.

Parametric Dictionary Design: Formulation

• Let Θ_d^N be the set of Gram matrices of the ETF's in $\mathbb{R}^{d \times N}$. An incoherent PDD is found using the following optimization problem,

$$\arg\min_{\Gamma\in\Upsilon,\mathbf{G}_G\in\Theta_d^N}\|\mathbf{D}_{\scriptscriptstyle{\Gamma}}^T\mathbf{D}_{\scriptscriptstyle{\Gamma}}-\mathbf{G}_{\scriptscriptstyle{G}}\|_{\scriptscriptstyle{\infty}}$$

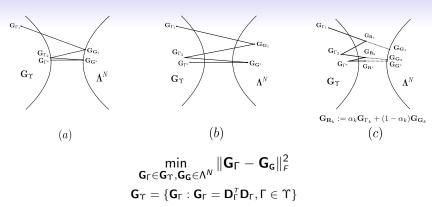
- Difficulties: There is no ETF for some selection of (d, N), the set of ETF's in $\mathbb{R}^{d \times N}$ is non-convex and it is difficult to minimize the ℓ_{∞} problem.
- Practical Solution: Convex relaxation of the set of ETF's,

$$\Lambda^{\textit{N}} = \{\mathbf{G} \in \mathbb{R}^{\textit{N} \times \textit{N}} : \mathbf{G} = \mathbf{G}^{\scriptscriptstyle{T}}, \operatorname{diag} \mathbf{G} = 1, \max_{i \neq j} |g_{i,j}| \leq \mu_{\textit{G}}\},$$

and using ℓ_2 -norm as the closeness measure,

$$\arg\min_{\Gamma \in \Upsilon} \|\mathbf{D}_{\Gamma}^T \mathbf{D}_{\Gamma} - \mathbf{G}\|_F^2$$
.

Optimization Methods



- (a) Alternating Projection: Needs to know the projection operators.
- (b) Alternating Minimization: Reduces the objective at each parameter update.
- (c) Relaxed Alternating Minimization : When the solution in one of the sets, here Υ , is needed to be found.

PDD Algorithm

Parametric Dictionary Design

```
1: initialization: k = 1, \mathbf{D}_{\Gamma_1} \in \mathscr{D}, \{\alpha_i\}_{1 \leq i \leq K} : 0 < \alpha_i \leq 1
2: while k \leq K do
3: \mathbf{G}_{\Gamma_k} = \mathbf{D}_{\Gamma_k}^\mathsf{T} \mathbf{D}_{\Gamma_k}
4: \mathbf{G}_{P_{k+1}} = \arg\min_{\mathbf{G} \in \Lambda^N} \|\mathbf{G}_{\Gamma_k} - \mathbf{G}\|_F
5: \mathbf{G}_{R_{k+1}} = \alpha_k \mathbf{G}_{P_{k+1}} + (1 - \alpha_k) \mathbf{G}_{\Gamma_k}
6: \mathbf{D}_{\Gamma_{k+1}} \in \mathbf{D}_{\Gamma_k} \cup \{\forall \mathbf{D} \in \mathscr{D} : \|\mathbf{D}^\mathsf{T}\mathbf{D} - \mathbf{G}_{R_{k+1}}\|_F < \|\mathbf{G}_{\Gamma_k} - \mathbf{G}_{R_{k+1}}\|_F \}
7: k = k+1
8: end while
```

4: Projection of $\mathbf{G}_{\Gamma_{k}}$ onto Λ^{N} :

$$\begin{split} \mathcal{P}_{\text{\tiny A}^{\text{\tiny N}}}(\mathbf{G}_{\text{\tiny D}} &= \mathbf{D}^{^{\text{\tiny T}}}\mathbf{D}) = \{g_{^{p}i,j}\} \\ g_{^{p}i,j} &= \begin{cases} \operatorname{sign}(g_{\text{\tiny D}i,j})\mu_{\text{\tiny G}} & i \neq j \\ 1 & \text{otherwise} \end{cases}, \end{split}$$

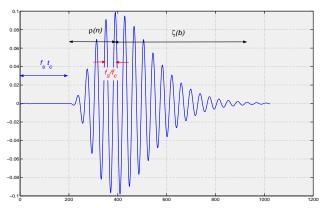
6: Parameter update $\Gamma_k \to \Gamma_{k+1}$: using a gradient descent method.

Case Study: Gammatone Parametric Dictionary

Gammatone Atom:

$$g(t - t_c) = a.(t - t_c)^{n-1}e^{-2\pi bB(t - t_c)}\cos(2\pi f_c(t - t_c))$$

 $B = f_c/Q + b_{min}$, where Q is a constant and b_{min} is the minimum bandwidth. $\gamma = [t_c \ f_c \ n \ b]^T$ is the set of parameters which could be found using PDD.



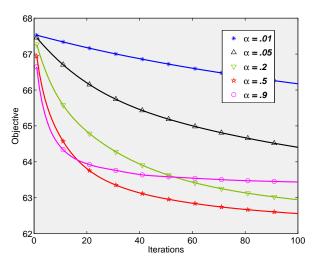
Simulation setting

General Parameters		
(ETF is plausible with this setting)		
Name	Value	
d	1024	
N	2048	
Q	9.26449	
b_{min}	24.7 Hz	

Initial Parameters		
Name	Value	
f_s	12000 Hz	
n	4	
b	0.5	
f_c^k	$(f_s/2 + Qb_{min})e^{-0.45k/Q} - Qb_{min}$	
t_c^I	$t_p + 0.75(I-1) t_p$	

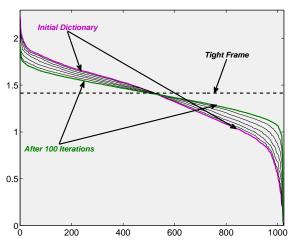
Simulations: Role of α

The objective functions for different $\{\alpha_k\}_{\forall k,\alpha_k=\alpha}$, for a constant α .



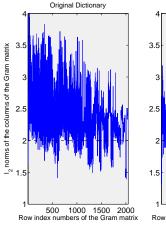
Simulations: Getting Close to Being Tight Frame

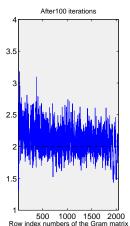
Singular values of the dictionaries at some selected iterations.



Simulations: Getting Close to Being ETF

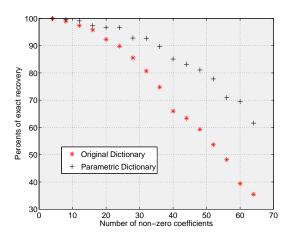
The column ℓ_2 -norm plots of the Gram matrices $(\sum_j |\langle \mathbf{d}_i, \mathbf{d}_j \rangle|^2)$ of the original (left) and designed (right) dictionaries. The column ℓ_2 -norm of $\mathbf{G} \in \Lambda^N$ $(1 + (N-1)\cos^2(\gamma))$ is plotted for reference.





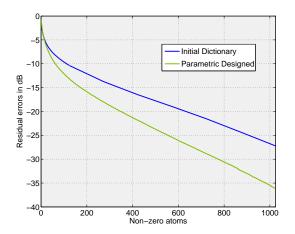
Simulations: Exact Recovery

Exact support recovery of the sparse signals.



Simulations: Residual Error Decay Rate of MP

The residual error plots using matching pursuit for sparse approximation of the audio signal.



Conclusion and Future Work

Conclusion

- A new framework for dictionary design, under a minimum coherence constraint, was presented.
- A difficult optimization problem needs to be solved ⇒ a relaxed optimization problem was introduced.
- A practical algorithm was presented to *approximately* solve the relaxed problem.
- Simulations demonstrate that the proposed algorithm not only finds a dictionary which is close to being ETF, but also this dictionary practically shows superior performance in a real application.

Future Work

- ▶ Structured Parametric Dictionary Design, to find a fast dictionary.
- Finding a more efficient method for the parameter update step.
- Alternate design criterion.

Thanks for your attention.

Any question ?