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Generative model

y=Dx-+v

y € R, D € RI*N,
x € RN and v € RY.
Under-determined
generative model

Sd< N

@ sparse coding:

Sparse Coding
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@ ¢ =0 called sparse representation.

@ ¢ > 0 called sparse approximation.

X = argmin, [|x|o s-t. ||y — Dx|?> <&,




Dictionary Selection Methods

Concatenation of orthonormal bases: Let O be the set of all
orthonormal dictionaries in R¥*?. D = {D,};e7,Vi € Z,D, € O is
given. A dictionary D in R?*“*! is generated using,

D=[D,---D,---D].

Dictionary learning using a set of training samples £ = {y, }iez:
The goal is to find a dictionary such that it provides sparser coding
for the given class of signals. A general formulation for dictionary
learning is,

D = arg min
& Z et Doty 1O

Dictionary design subject to a certain property: These properties
include, but not restrict to, Restricted Isometry Property (RIP),
minimum coherence p and minimum cumulative coherence p,(m).



Incoherent Dictionary

Coherence

The coherence of a dictionary D is defined to be the maximum
correlation of two distinct atoms and can be found using,

vy = erel Gy el
inji#

Incoherent dictionary: A dictionary is incoherent when pyp is
“small”.

Equiangular Tight Frame (ETF)

A column normalized dictionary D¢ is called ETF, when there is a
v : 0 <7y <m7/2, such that [(d;,d;)| = cos(y) : Vi,ji#].
If there exists an ETF in RY*N it is the solution of
dxN — —
R x » Mp Z He = d(Nfl) .

argminpeg{po} , and for any D €




Parametric Dictionary

Parametric Dictionary

Let ' be a set of parameters in the admissible set T.

Dr : T — RY*N is defined to be a mapping from the parameter
space to the dictionary space.

Given a mapping Dy, a dictionary called Parametric Dictionary,
when it is generated usinga l € T.

Special Case: A special mapping Dr is when it is
column-separable. In this framework each atom d; is generated by
a set of parameters ;. This type of mapping has often been used
in sparse coding.



An example: Multi-scale Gabor Parametric
Dictionary

The parameters in a real value multi-scale Gabor atom are scale, phase and the
time-frequency shift and the generative function is Gaussian.

I—tiy2
g..(t) = ae 5 cos(2nfi(t — t;) + &)
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Parametric Dictionary Design

Parametric Dictionary Design

Let Dr, T and a certain dictionary property be given. Parametric
Dictionary Design is how to find a '™ € T such that Dp=«
(approximately) has such a property.

@ Objective: Finding a dictionary close to being ETF.

@ This search is easier to be done in the space of N by N real
matrices, by finding the matrix, , associated with
the optimal parametric dictionary.

@ Closeness measure: The infinity norm ||.||o. in RVXN | which is the
maximum absolute value of the elements.



Parametric Dictionary Design: Formulation

o Let ©Y be the set of Gram matrices of the ETF's in R¥*N. An
incoherent PDD is found using the following optimization problem,

arg  min ||DrTDr - G¢ll
reT,Ggeo!

o Difficulties: There is no ETF for some selection of (d, N), the set of
ETF's in RY*N is non-convex and it is difficult to minimize the £,
problem.

@ Practical Solution: Convex relaxation of the set of ETF's,

N ={G e R™™: G =G, diag G = 1, max|gi| < uc}.
7]

and using ¢>-norm as the closeness measure,

ar min D'D, — G|%
gl’e'T‘,(ISE/\N” r r ||F



Optimization Methods

Gr, Gr,
Ga,
Gr, Gr,
Gr- Gg- Gr-
Gy A.N Gr

Gr, = a3Gr, + (1 - a)Ga,
(a) (b) (c)
min _[|Gr — Ge||?
GreGy,GgeNN
Gr = {Gr: Gr =D[D,T € T}
(a) Alternating Projection: Needs to know the projection operators.
(b) Alternating Minimization: Reduces the objective at each parameter

update.
(C) Relaxed Alternating Minimization : When the solution in one of the

sets, here T, is needed to be found.
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PDD Algorithm

Parametric Dictionary Design

1: initialization: k =1, Dr, € 2, {ai}1<i<k 10 < i <1

2: while k < K do

3: Grk = D;—k Drk

4. Gp, = argmingean ||Gr, — Gl|r

5: Gr,,, = aGry,, + (1 — a)Gr,

6: D"k+1 € Drk U {VD €9: HDTD - GRkHHF < HGrk - GRk+1HF}
7: k=k-+1

8: end while

4: Projection of Gy, onto A":

P/\’V(GD = DTD) = {gF’i,j}

g = Sig”(gni,j)ﬂc i#]j
Pij = .
J 1 otherwise ,

6: Parameter update [y — [x1+1: using a gradient descent method.
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Case Study: Gammatone Parametric
Dictionary

Gammatone Atom:
gt —t) = a(t —t.)" te 2™BU1) cos(2nf(t — 1))

B = f./Q + bmin, where Q is a constant and bpmis is the minimum bandwidth.

~v = [tec f- n b]" is the set of parameters which could be found using PDD.
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Simulation setting

General Parameters

Name Value
1024
N 2048
Q 9.26449
bin 24.7 Hz
Initial Parameters
Name Value
f, 12000 Hz
n 4
b 0.5
fi | (/24 Qbmin)e *45%/Q — Qbmin
t! tp +0.75(/ — 1) t,
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Simulations: Role of o

The objective functions for different {a }vk a,=a, for a constant c.
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Simulations: Getting Close to Being Tight
Frame

Singular values of the dictionaries at some selected iterations.
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Tight Frame
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Simulations: Getting Close to Being ETF

The column {>-norm plots of the Gram matrices (3_; [(d;,d;)|?) of
the original (left) and designed (right) dictionaries. The column
ly-norm of G € ANV (1 + (N — 1) cos?(7)) is plotted for reference.
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Simulations: Exact Recovery

Exact support recovery of the sparse signals.
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Simulations: Residual Error Decay Rate of MP

The residual error plots using matching pursuit for sparse
approximation of the audio signal.
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Conclusion and Future Work

A new framework for dictionary design, under a minimum coherence
constraint, was presented .

A difficult optimization problem needs to be solved = a relaxed
optimization problem was introduced.

A practical algorithm was presented to approximately solve the
relaxed problem.

Simulations demonstrate that the proposed algorithm not only finds
a dictionary which is close to being ETF, but also this dictionary
practically shows superior performance in a real application.

Structured Parametric Dictionary Design, to find a fast dictionary.
Finding a more efficient method for the parameter update step.

Alternate design criterion.
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Thanks for your attention.

Any question 7

Parametric Dictionary Design for Sparse Coding
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