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Sparse Coding

Generative model

y = Dx + ν

y ∈ Rd , D ∈
Rd×N , x ∈ RN and
ν ∈ Rd . Under-
determined genera-
tive model

⇔ d < N
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sparse coding: x̂ = arg minx ‖x‖0 s. t. ‖y −Dx‖2 ≤ ξ,
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Dictionary Selection Methods

Concatenation of orthonormal bases: Let O be the set of all
orthonormal dictionaries in Rd×d . D = {Di}i∈I ,∀i ∈ I,Di ∈ O is
given. A dictionary D in Rd×d|I| is generated using,

D = [D1 · · ·Di · · ·D|I|].

Dictionary learning using a set of training samples L = {yi}i∈I:
The goal is to find a dictionary such that it provides sparser coding
for the given class of signals. A general formulation for dictionary
learning is,

D̂ = arg min
D

∑
i∈I

min
x∈{θ:‖yi−Dθ‖2≤ξ}

‖x‖0.

Dictionary design subject to a certain property: These properties
include, but not restrict to, Restricted Isometry Property (RIP),
minimum coherence µ and minimum cumulative coherence µ1(m).
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Incoherent Dictionary

Coherence

The coherence of a dictionary D is defined to be the maximum
correlation of two distinct atoms and can be found using,

µD = max
i ,j :j 6=i

{|〈di ,dj〉|}.

An incoherent dictionary has a small µD.

Equiangular Tight Frame (ETF)

A column normalized dictionary DG is called ETF, when there is
a γ : 0 < γ < π/2, such that |〈di ,dj〉| = cos(γ) : ∀i , j i 6= j .
If there exists an ETF in Rd×N , it is the solution of

arg minD∈D{µD}, for any D ∈ Rd×N , µD ≥ µG :=
√

N−d
d(N−1) .
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Parametric Dictionary

Parametric Dictionary

Let Γ be a set of parameters in the admissible set Υ.
DΓ : Υ→ Rd×N is defined to be a mapping from the parameter
space to the dictionary space.
Given a mapping DΓ, a dictionary called Parametric Dictionary,
when it is generated using a Γ ∈ Υ.

Special Case: A special mapping DΓ is when it is
column-separable. In this framework each atom di is generated by
a set of parameters γi . This type of mapping has often been used
in sparse coding.
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An example: Multi-scale Gabor Parametric
Dictionary

The parameters in a real value multi-scale Gabor atom are scale, phase and the
time-frequency shift and the generative function is Gaussian.

gγi
(t) = aie

(
t−ti

si
)2

. cos(2πfi (t − ti ) + φi )
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Structured Dictionaries

Structured Dictionary: A dictionary is structured if the atoms are
geometrically related.
Examples: shift-invariant, multi-scale, multi-frequency and signature
based dictionaries.

Structured Parametric Dictionary: A dictionary is called a structured
parametric dictionary when its structure is parametrized.
An example: A shift-resilience structure, which let the dictionary be
implemented using filter-banks, will be explored here.
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Parametric Dictionary Design

Parametric Dictionary Design

Let DΓ, Υ and a certain dictionary property be given. Paramet-
ric Dictionary Design is how to find a Γ∗ ∈ Υ such that DΓ∗

(approximately) has such a property.

Objective: Finding an incoherent dictionary, i.e. a dictionary close
to being ETF.

This search is easier to be done in the space of N by N real
matrices, by finding the Gram matrix, GD := DT D, associated with
the optimal parametric dictionary.

Closeness measure: The infinity norm ‖.‖∞ in RN×N , which is the
maximum absolute value of the elements, is the appropriate
measure.
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Parametric Dictionary Design: Formulation

Let ΘN

d be the set of Gram matrices of the ETF’s in Rd×N . An
incoherent PDD is found using the following optimization problem,

arg infΓ∈Υ,GG∈ΘN
d
‖DT

Γ DΓ − GG‖∞

Difficulties: There is no ETF for some selection of (d ,N), the set of
ETF’s in Rd×N is non-convex and it is difficult to minimize the `∞
problem.

Practical Solution: Convex relaxation of the set of ETF’s,

ΛN = {G ∈ RN×N : G = GT , diag G = 1,max
i 6=j
|gi,j | ≤ µG},

and using `2-norm as the closeness measure,

arg minΓ∈Υ,G∈ΛN ‖DT
Γ DΓ − G‖2

F .
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Optimization Methods

min
GΓ∈GΥ,GG∈ΛN

‖GΓ − GG‖2
F

GΥ = {GΓ : GΓ = DT
Γ DΓ, Γ ∈ Υ}

(a) Alternating Projection: Needs to know the projection operators.

(b) Alternating Minimization: Reduces the objective at each parameter

update.

(c) Relaxed Alternating Minimization (proposed method): When the

solution in one of the sets, here Υ, is needed to be found.
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Case Study: Gammatone Parametric
Dictionary

Gammatone Atom:

g(t − tc) = a.(t − tc)n−1e−2πbB(t−tc ) cos(2πfc(t − tc))

B = fc/Q + bmin, where Q is a constant and bmin is the minimum bandwidth.
γ = [tc fc n b]T is the set of parameters in an unstructured PDD.
tc = t0 + l∆ is the generative model in the structured PDD and
γ = [t0 fc n b]T is the set of parameters where ∆ is fixed.
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Simulations: Wigner-Ville plot of the
unstructured designed dictionary
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Simulations: Wigner-Ville plot of the
structured designed dictionary
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Simulations: Getting Close to Being Tight
Frame

Eigenvalues of the Gram matrices.
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Simulations: Residual Error Decay Rate of MP

The residual error plots using matching pursuit for sparse
approximation of the audio signal.
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Conclusion and Future Work
Conclusion

The PDD was extended to find a structured parametric dictionary.

As the PDD problem is a difficult optimization problem, a new
method for the parameter update step was introduced which let the
update be found using conventional optimization algorithms, e.g.
the gradient descent and Newton’s methods.

The structured and unstructured parametric dictionary design
methods was compared with some simulations.

Simulations on the sparse approximations using MP showed that the
structured parametric dictionary improves the error decay rate even
though the improvements observed in the algorithm evaluation are
small.

Future Work

I Other dictionary structures should be investigated.

I The parametric dictionary model can be applied to the dictionary
learning problem.
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Thanks for your attention.

Any questions?



PDD Algorithm

Parametric Dictionary Design

1: initialization: k = 1, DΓ1
∈ D , {αi}1≤i≤K : 0 < αi ≤ 1

2: while k ≤ K do
3: GΓk

= DT
Γk

DΓk

4: GPk+1
= arg minG∈ΛN ‖GΓk

− G‖F

5: GRk+1
= αkGPk+1

+ (1− αk)GΓk

6: DΓk+1
∈ DΓk

∪ {∀D ∈ D : ‖DT D− GRk+1
‖F < ‖GΓk

− GRk+1
‖F}

7: k = k + 1
8: end while

4: Projection of GΓk
onto ΛN :

PΛN (GD = DT D) = {gP i,j}

gP i,j =

(
sign(gD i,j)µG i 6= j

1 otherwise ,

6: Parameter update Γk → Γk+1: mapping to the dictionary space and

optimizing the dictionary in the range space.



Parmeter Update

Parameter Update by Optimization in the Range Space

1: G
1
2 = Σ

1
2
d U : GRk+1

= UΣUT

2: A∗ = VWT : DΓk
G

T
2 = V∆WT

3: DΓk+1
= arg minD∈D ‖D− A∗G

1
2 ‖F

4: Updating Γk+1 with the parameters of DΓk+1

1: A projection of GRk+1
∈ ΛN onto the space of rank-d symmetric matrices in

RN×N , S+(d ,N).

G
T
2 G

1
2 = arg minG∈S+(d,N) ‖G− GRk+1

‖F : Σ
1
2
d d×N

= diag{σ
1
2
i }i∈I , |I| = d .

2: A∗ = arg min
A∈Rd×d

∗ :AT A=Id
‖DΓk

− AG
1
2 ‖F .

3: Dictionary and parameter update by minimizing the objective with the

gradient descent, Newton’s or Gauss-Newton’s method.



Simulation setting

General Parameters
(ETF is plausible with this setting)

Name Value

d 256
N 418
αi 0.5
Q 9.26

bmin 24.7 Hz
fs 4000 Hz

Initial Parameters

Name Value

n 4
b 1

f k
c 50 + .27kB
t0 0


	Introduction
	Sparse Coding
	Dictionary Selection Methods
	Incoherent Dictionary

	Parametric Dictionary Design (PDD)
	PDD: Formulation
	PDD: Algorithm

	Case Study
	Gammatone Dictionary
	Simulations: Algorithm Evaluation
	Simulations: Sparse Audio Coding

	Conclusion and Future Work
	Appendices

