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ABSTRACT

A new dictionary selection approach for sparse coding, called para-

metric dictionary design, has recently been introduced. The aim is

to choose a dictionary from a class of admissible dictionaries which

can be presented parametrically. The designed dictionary satisfies

a constraint, here the incoherence property, which can help conven-

tional sparse coding methods to find sparser solutions in average. In

this paper, an extra constraint will be applied on the parametric dic-

tionaries to find a structured dictionary. Various structures can be

imposed on dictionaries to promote a correlation between the atoms.

We choose a useful structure which lets us to implement the dic-

tionary using a set of filter banks. This indeed helps to implement

the dictionary-signal multiplications more efficiently. The price we

pay for the extra structure is that the designed dictionary is not as

incoherent as unstructured parametric designed dictionaries.

Index Terms— Sparse Approximation, Dictionary Selection,

Parametric Dictionary Design, Structured Dictionary.

1. INTRODUCTION

Solving an underdetermined linear system inducing a sparsity con-

straint on the representation has found various applications recently.

Often it is assumed that the generative model is known a priori. The

generative model is often represented by a matrix, called a dictio-

nary, Dd×N ∈ Cd×N : d < N , which can be used to generate the

given signal y by y ≈ Dx. Each column of D is called an atom.

Here we only consider real atoms and signals. The sparse approxi-

mation would be,

x̂ = arg min
x

‖x‖0 s. t. ‖y − Dx‖2
2 ≤ ξ, (1)

where the operator ‖.‖0 counts the number of non-zero coefficients

and ξ ∈ R+ is a small constant. Optimization of (1) is very difficult

in general and we often use some kind of relaxations or approxima-

tions to make it tractable, see [1] for a survey on different sparse

coding methods.

When the dictionary is unknown, it can be adapted to a set of

training samples using dictionary learning methods, see for exam-

ple [2,3]. Alternatively one can generate a dictionary which satisfies

some mathematical properties to facilitate the use of dictionary with

conventional sparse coding algorithms. Parametric Dictionary De-

sign (PDD) [4] is proposed in such a framework, in which the dic-

tionary is specified by a set of parameters. The aim is to find a set

of parameters subject to the incoherence of dictionary. The (mutual)
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coherence [5] µD of a column normalized dictionary D is defined as

follows,

µD = max
i,j:j 6=i

{|〈di,dj〉|}.

A dictionary is incoherent if its coherence is small and the largest

inner-product of two distinct atoms is thus small. The greedy pur-

suit and basis pursuit algorithms are more successful in Perfect, or

Exact, Recovery [5] and the representations are often sparser us-

ing incoherent dictionaries, which is a motivation for the incoher-

ent PDD. By letting the dictionary lie in the parametric space we

promote the availability of sparse approximations and by minimiz-

ing the coherence of the dictionary we improve the performance of

practical sparse coding algorithms.

A drawback of the PDD is that the designed dictionary does not

have a useful structure, for example, to enable fast implementation.

A structured dictionary is in general a dictionary in which the atoms

are correlated. A simple example of structured dictionaries is a shift-

invariant dictionary in which the atoms are time-shifted versions of a

set of mother atoms. A parametric dictionary is called “structured”,

if there exist at least two distinct atoms that depend on the values of a

single non-empty set of parameters. In this setting, the dictionary is

not column separable based on the parameters (the value of a single

parameter can change more than one atom). The number of parame-

ters is also reduced as a result, which can help to free up some mem-

ory in practice. Although the PDD framework in [4] includes struc-

tured dictionaries, they will here be considered with more detail. A

case study will be presented later to practically demonstrate the ad-

vantages of the proposed method. A new approach for the PDD is

also presented which can be used in structured and non-structured

scenarios. It simplifies the parameter update step by reducing the

problem order from quartic to quadratic form.

The contributions of current paper are twofold:

1. Presenting a new practical algorithm for solving the param-

eter update step of PDD: In the previous reports [4, 6], we

introduced a gradient descent based algorithm for the param-

eter update. Although it works well in some applications, by

constraining the search space to the space of rank-d matrices,

the parameter update step would be easier. A technique to

project onto such a space followed by updating the parame-

ters will later be explored in this paper.

2. Applying a structure to the parametric dictionaries to accel-

erate dictionary implementations: A shift-resilience structure

is proposed here. The modified PDD, which is called Struc-

tured PDD, is presented and the designed dictionary is com-

pared with the initial and the unstructured dictionary by some

simulations.



Algorithm 1 Parametric Dictionary Design

1: initialization: k = 1, DΓ1
∈ D , {αi}1≤i≤K : 0 < αi ≤ 1

2: while k ≤ K do

3: GΓk
= DT

Γk
DΓk

4: GPk+1
= arg minG∈ΛN ‖GΓk

−G‖F

5: GRk+1
= αkGPk+1

+ (1 − αk)GΓk

6: DΓk+1
∈ DΓk

∪{∀D ∈ D : ‖DT D−GRk+1
‖F < ‖GΓk

−
GRk+1

‖F }
7: k = k + 1
8: end while

2. PARAMETRIC DICTIONARY DESIGN

Let DΓ ∈ D be a column normalized1 parametric dictionary where

Γ ∈ Υ is a collection of parameters and D is an admissible set. In

a simple setting, Γ is a matrix in Rp×N and each atom di can be

generated using a column of parameter matrix γi. The aim of PDD

is to find Γ∗ such that the designed dictionary DΓ∗ is incoherent,

i.e. µ is small. The inner-product of two atoms of D represents

the angle between those atoms. A dictionary with uniform angles

between each pair of distinct atoms is called an Equiangular Tight

Frame (ETF), which has the minimum coherence [7]. Let G :=
DTD be the Gram matrix of D. The Gram matrix GG of an ETF

has unit values on the main diagonal and the absolute values of the

off-diagonal elements are µG, which is defined as,

µG :=

s

N − d

d(N − 1)
. (2)

Let the linear space of full rank matrices in Rd×N be equipped

with the trace inner product, i.e. ∀A,B ∈ Rd×N 〈A,B〉 =
tr{AT B}. The PDD can be defined as finding a dictionary with a

Gram matrix close to the set of Gram matrices of ETF’s, ΘN
d . An

ETF can exist if N ≤ d(d+1)
2

, which it means that there is no ETF

for some pairs of (d, N)’s. To simplify the problem and resolve the

issue of empty ΘN
d ’s for some (d, N)’s, ΘN

d is replaced by a convex

set ΛN [8], which includes ΘN
d , as follows,

ΛN = {G ∈ RN×N : G = G
T , diag G = 1, max

i6=j
|gi,j | ≤ µG}.

The PDD problem can now be reformulated as an optimization prob-

lem,

inf
Γ∈Υ,G∈ΛN

‖DT
Γ DΓ − G‖2

F (3)

In this paper we assume that Υ is a compact set, which lets us to use

the “min” operator instead of “inf” in (3). Solving (3) is not easy in

general. To simplify the problem and find an approximate solution,

we assume thatDΓ is continuously differentiable, i.e. class C1, then

apply a relaxed version of the alternating minimization method. In

the alternating minimization method, Γ and G are updated alternat-

ingly to reduce the objective of (3), while the other parameter is kept

fixed. The stability, i.e. boundedness, of the algorithm is thus guar-

anteed. A relaxed version of such method has been used in [4] in

which Γ is updated to reduce the distance of the Gram matrix and a

point between current Gram matrix and the current G ∈ ΛN . The

relaxation is controlled by a scalar parameter α. This point might be

outside of both Υ and ΛN . A pseudocode for this algorithm is pre-

sented in Algorithm 1. It has two important steps, line 4 and 6. G

is updated in line 4 with the closest point in ΛN to the current GΓk
.

1In this paper we assume that the dictionary is always column normalized.

Algorithm 2 Parameter Update Step

1: G = GRk+1

2: G
1
2 = Σ

1
2

d U : G = UΣUT

3: A∗ = VWT : DΓk
G

T
2 = V∆WT

4: D∗ = arg minD∈D ‖D − A∗G
1
2 ‖F

5: DΓk+1
=

(

D∗

DΓk

see (7) for the criteria.

6: Updating Γk+1 with the parameters of DΓk+1

As long as ΛN is convex, GPk+1
is unique and it can be found by

projecting GΓk
onto ΛN using the following operator [8],

gP i,j =

(

sign(gDi,j)µG i 6= j

1 o.w. ,
(4)

where gDi,j is the (i, j)th component ofGΓk
. The parameter update

step of line 6 can be done using a gradient descent method as intro-

duced in [6]. A difficulty is that the gradient is a tensor and applying

conventional optimization methods become difficult in this setting.

Here we introduce an alternative technique to update parameters.

Let the set of symmetric rank-d matrices in RN×N be noted

by S+(d, N) [9], which is shown to be equivalent to the set of

Gram matrices of full-rank matrices in Rd×N [10, Proposition 1.1].

S+(d,N) has some interesting features which might be useful for

the PDD and we left it for an individual research in the future. The

first step of the parameter update step can be to find the orthogo-

nal projection of GRk+1
onto S+(d, N). If GRk+1

= UΣUT , the

projection onto S+(d, N) can be found by PS+(d,N){GRk+1
} =

UΣdU
T where Σd = diag{σi}i∈Id

and Id is the set of d largest

eigenvalues of GRk+1
[8]. We can now restrict the search space to

S+(d,N) and find an update which is closer toPS+(d,N){GRk+1
}.

S+(d, N) = {DT D : DT ∈ RN×d
∗ } where RN×d

∗ is the set of

all full-rank real N × d matrices [10]. A further simplification can

be to use a mapping from S+(d, N) to RN×d
∗ and use a new metric,

i.e. ‖.‖F in RN×d
∗ . This mapping is not unique which is caused by

the fact that the Gram matrix is invariant to the left rotation of D.

This mapping can be found in two steps, first by calculating G
1
2 ,

for example, using eigenvalue decomposition of G = UΣdU
T , i.e.

G
1
2 = Σ

1
2

d d×N
UT , where Σ

1
2

d = diag{σ
1/2
i }i∈I is d×N diagonal

matrix. Then finding the best rotation by minimizing the following

objective,

A
∗ = arg min

A∈R
d×d
∗

:AT A=Id

‖DΓk
− AG

1
2 ‖F . (5)

This is a standard optimization problem which can be solved exactly

[11, Example 7.4.8] as A∗ = VWT , where DΓk
G

T
2 = V∆WT

is a singular value decomposition. Using these two steps we can

find a mapping f : S+(d, N) → Rd×N
∗ by f(G) = A∗G

1
2 . Let

d(D,G) = ‖DT D − G‖F . The parameter update can now be

found as follows,

D∗ = {∀D∗ : D∗ = arg min
D∈D

‖D − f(G)‖F }, (6)

DΓk+1

(

∈ D∗ d(D∗,GRk+1
) < d(DΓk

,GRk+1
)

= DΓk
o.w.

(7)
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Fig. 1. Eigenvalues of the parametric dictionaries.

where D is the set of parametric dictionaries. Note that the solution

of (6) might not be unique. In this case we can update with one of

the solutions. The reason that we use (7) instead of directly updating

DΓk+1
with a D∗ ∈ D∗ is to prevent a continuum of solutions.

There is a wide range of methods to approximately minimize (6),

e.g. gradient descent, Newton’s and Gauss-Newton’s methods. The

dictionary update step also provides a parameter update which is

used in the PDD. A pseudocode for the new parameter update step

in line 6 is presented in Algorithm 2.

2.1. Structured Parametric Dictionary Design

A parametric dictionary is called structured if a single parameter af-

fects more than one atom. This framework is general and we only

consider a special case, in which the dictionary is partitioned into

disjoint sets of uncorrelated atoms. In other words, changing a sin-

gle parameter can only change the atoms of a partition. An example

of such dictionaries will be presented in the next section. Such a

dictionary can be presented as DΓ = [Dγk
]k∈K, where the oper-

ator [.]k∈K is the concatenation of operands. A step in most opti-

mization techniques, which is used for the line 4, is to calculate the

gradient of DΓ with respect to {γk}k∈K which can be simplified as
∂

∂Γ
D = [∂/∂γkDγk

]k∈K. In this setting if the number of parame-

ters in each γk is fixed, e.g. p, we can generate a parameter matrix

Γp×N by putting γk’s as the columns of Γp×N . In the next sec-

tion, it will be shown that such a setting can be used to generate a

shift-resilient Gammatone parametric dictionary.

3. CASE STUDY: STRUCTURED GAMMATONE

DICTIONARY

The Gammatone filterbanks have been shown to be closely related

to the human auditory system [12] and the dictionary learned using

audio training samples [13]. This model will be used here to find

a reasonable size incoherent dictionary which has a shift-resilience

structure for a more efficient dictionary implementation using filter

banks. The generative function for a Gammatone dictionary is as

follows,

g(t) = atn−1e−2πbBt cos(2πfct), (8)

where B = fc/Q + bmin, fc is the center frequency and a, b, Q,

bmin and n are some constants. The dictionary is generated by sam-
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Fig. 2. ℓ2 norms of the initial (a), the structured designed (b) and

unstructured designed dictionaries (c). The improvement of the ℓ2
norms w.r.t an ETF for the structured designed (d) and unstructured

designed (e) dictionaries.

pling the parameters of g(t − tc), where tc is the time-shift. To in-

duce the structure on the dictionary, let tc be generated with a linear

model, i.e. tc = t0 + l∆ : l ∈ N0, where t0 ∈ [0, ∆), ∆ and N0 are

the time-offset, the time-shift step size and non-negative integers. In

this paper we assume that ∆ is fixed during dictionary design, as let-

ting ∆ change, the PDD becomes very complicated. The difficulty

is mainly caused by the fact that changing ∆ can change the size of

the dictionary. γk = [t0k fck nk bk]T are thus the kth optimization

parameters. A set of atoms is generated using γk and {l : l ∈ L}
followed by discretizing the atoms, see [4] for more detail on dis-

cretization. l is upperbounded such that tc is always smaller than

the atom length. We can choose an upper bound for the magnitude

of each parameter to generate a bounded admissible set. By includ-

ing the boundary values, Υ becomes a compact set. The paramet-

ric dictionary DΓ is finally generated by concatenating Dγk
’s. The

derivation of the dictionary with respect to Γ can be derived, using

the structure explained in subsection 2.1, for each dictionary block

Dγk
similar to [4, Appendix B].

3.1. Simulation Results

The simulations are intended to first show the performance of the

PDD algorithm in a structured setting, then demonstrate the advan-

tages of designed dictionary in sparse approximation of audio signals

using MP. The simulation parameters are presented in Table 1. The

parameters in the first row and ∆ are fixed and the others are used to

generate the initial dictionaries, which might change throughout the

PDD.

The simulations were run with two settings, 1) unstructured: no

constraint on tc and 2) structured: tc follows the model tc = t0+l∆.

In the first experiment we designed the dictionary and showed the

eigenvalues of the Gram matrices in Figure 1. The eigenvalues of a

tight frame is also shown with a dashed line. Although the improve-

ment of the eigenvalues, toward a tight frame, is not significant, it

is changed in the right direction and is between the original and an

unstructured parametric designed dictionary. The ℓ2 norms of the

columns of the Gram matrices of the mentioned dictionaries, which

can show how much the corresponding atoms are correlated to the



Table 1. The parameters of the Structured PDD.

d N |K| bmin Q K α
256 418 35 24.7 9.26 100 0.5

t0 n b fc ∆
0 4 1 50 + .27kB arg maxt |g(t)|

other atoms, are shown in the first row of Figure 2. The changes

of the norms is obvious in the unstructured designed dictionary. To

show that it is improved in the structured dictionary we also showed

the reduction of the norms toward an ETF in the second row. Al-

though the improvements in norms are small, most of the graph is

in the positive orthant, which shows a reduction of the norm to a

reference ETF.

Figures 1 and 2 show only a small achievement by structured

PDD. This might be caused by selecting a highly restrictive struc-

ture for the dictionary. It is also relevant to investigate the perfor-

mance of the structured parametric designed dictionary in sparse ap-

proximation of some sparsly structured signals. Some audio signals

recorded from BBC Radio 3, which often plays classical music, have

been used to evaluate the dictionaries. The average approximation

errors, using 100 randomly selected audio samples, of the sparse ap-

proximations by applying MP algorithm are shown in Figure 3. The

Structured dictionary shows a promising performance in this exper-

iment.

4. CONCLUSION

Imposing a structure on the parametric dictionary to facilitate the

implementation of the designed dictionaries was investigated in this

paper. A general form was introduced and a special case was in-

vestigated in more detail by using a case study. Another method

was also presented to let the PDD be solved using conventional op-

timization techniques. Finally by some simulations on the Gamma-

tone parametric dictionary, we showed that the designed dictionary

is superior to the initial dictionary in sparse approximations of some

selected audio signals.

One possible structure was explored in this report. There have

been various structures introduced for dictionaries in dictionary

learning problem. An independent research on these structures is

left for future work. A structured parametric dictionary model can

also be used in the dictionary learning problem. It preserves the

structure of dictionary while adapting the dictionary to a given data.

The proposed algorithm for the parameter update needs to cal-

culate the objective value in each iteration. It is a necessary step to

guarantee the stability of the algorithm. Furthur investigations on

the proposed algorithm might guarantee the stability of the overall

algorithm without an explicit calculation of the objective.
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