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Abstract. A new dictionary learning method for exact sparse repre-
sentation is presented in this paper. As the dictionary learning methods
often iteratively update the sparse coefficients and dictionary, when the
approximation error is small or zero, algorithm convergence will be slow
or non-existent. The proposed framework can be used in such a setting
by gradually increasing the fidelity of the approximation. This technique
has previously been used for the convex sparse representations. It has
been extended here to the non-convex dictionary learning problem by
allowing the dictionary be modified.
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1 Introduction

Inverse problems are the subject of different areas in science and engineering. We
name computational tomography, seismology and radar as some examples. The
objective is to recover the parameters which give the observed data by applying
the forward operator. As the problem is often ill-posed, we need to assume a
model for the parameters to resolve the recoverability ambiguity. The sparsity
model, in which we assume few parameters are non-zero, can successfully model
a variety of observed natural data. The forward operator is often assumed to be
linear and finite dimensional. Hence the forward operator can be presented as a
fat matrix, which is called a dictionary and each column is called an atom [1].
The inverse problem with this setting is an NP-hard problem, but many practical
algorithms have been proposed to solve it approximately or exactly in some
occasions [1,2].

When the forward operator in this setting is not given, we can use the do-
main knowledge to select a good model. The term good means that such sparse
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parameters (coefficients) are possible to find for the observed data. The domain
knowledge can be incorporated as a parametric model for the dictionary [3] or the
dictionary can be adapted using a sample based dictionary learning method [4-8].
In the sample based dictionary learning, the algorithm starts with an initial guess
for the dictionary and gradually changes it to provide sparser representations or
less model mismatch. The learning process has thus two distinct steps, solving
a sparse inverse problem with the current dictionary, then updating the dictio-
nary to reduce model mismatch with fixed coefficients'. When the dictionary is
normal, i.e. a dictionary with unit norm atoms, it is recoverable if the observed
data uniquely represents the dictionary up to some column permutations and
atom sign flips. The uniqueness condition has been explored in [9,10]. Aharon
et al. intuitively suggested the K-SVD dictionary learning algorithm as a candi-
date for the dictionary recovery. This method has been introduced for dictionary
learning for sparse approximation, where there exists some model mismatch, i.e.
approximation error. Although good results have been reported in [7,8], the re-
lation between exact recovery and K-SVD has not been shown. Recently a new
framework for dictionary recovery has been introduced in [11,12], which is based
on dictionary learning for ¢ exact sparse representations. Gribonval et al. [12]
shows that the generative dictionary is a local minimum of the proposed (non-
convex) optimization problem with high probability, when the coefficients and
the dictionary follow some distributions. A difficulty with the proposed recovery
framework is that most of the dictionary learning methods are not able to work
in an exact sparse representation setting. An ¢; exact dictionary learning [13]
has been proposed recently. Unfortunately the stability and the practical perfor-
mance of this method have not been explored. Here we present a new dictionary
learning method which can be used for a high fidelity sparse representation. It is
based on generalizing the Pareto Curve root finding technique for ¢; sparse rep-
resentation [14], to a dictionary learning framework. The new framework can also
be used in dictionary learning for fixed levels of fidelity sparse approzimations.

2 Sparse Representation using Pareto Curve Root
Finding

Let y € R™, x € R™ and f : R™ — R™ be respectively the observed data,
the coefficient vector and the forward operator. As the forward operator lies in
the finite dimensional space here, we represent it using a matrix D € R™*",
The inverse problem can now be formulated as finding x such that y = Dx.
As this problem often is ill-posed/underdetermined, e.g m < n, the solution is
not unique. By assuming a sparsity model for the coefficients, the sparse inverse
problem can be solved by finding the sparsest solution in {x|y = Dx}. The
convex envelope of the sparsity function, constrained to an £, ball, is the ¢;
norm, which is now the most popular regularization factor for sparse coding

! The K-SVD [7] is slightly different, as it also allows the coefficients to adapt in the
dictionary update steps.
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[2]. The sparse inverse problem can now be found by minimizing the following
optimization problem,
min ||x[|; st y=Dx. (1)
X

This optimization problem, which is called Basis Pursuit (BP), is convex and
can be solved using the Linear Programing (LP) method [2]. Although LP is
one the most powerful methods for ezactly solving (1), we practically need to
solve it up to few significant figures. The gradient based methods converge fast
with this precision. The main issue with solving (1) is that the objective is
not differentiable and the gradient projection method [15], which is an efficient
method to solve convexly constrained continuously differentiable objectives, can
not be applied. For the moment let y ~ Dx and distance in the observation
space be Euclidean, d(y,y) = ||y — ¥||2. A sparse approximation can be found
using the following optimization problem, which is called LASSO [16],

minly ~ Dx[3 st [|x <. (2)

where 7 € R™ is the radius of the ¢; ball. Let the solution of (2), for each 7, be
called ¢(7), i.e. ¢(7) := ||y — Dx*||3, where x* is the minimizer of (2). ¢(7) is
a non-increasing function and when D is full rank, the set A = {7|¢(7) = 0}
is non-empty. The Pareto Curve is generated by plotting ¢(7) for 7 € RT. Tt
actually presents the optimal trade-off between the sparsity, here the ¢; norm
of the coefficients, and the f5 norm of the approximation error. Let 7 be the
smallest 7 € A. It is straight forward to show that any solution of (2) with
7* is also a solution of (1). The good news is that (2) can efficiently be solved
using the gradient projection method, for any given 7. We thus only need to find
7*. Van den berg et al. showed in [14] that ¢(7) is convex and differentiable,
where ¢(7) # 0, and used a Newton’s root finding method to iteratively update
717 which is 7 at the nth iteration, such that lim, . 71"/ = 7*. The Newton’s
method is guaranteed to converge with this setting, i.e. convex and differentiable
function.

3 Dictionary Learning for ¢; Exact Sparse Representation

In sample based dictionary learning, a set of training samples YV = {y;}ier,
where |£] = L, is given. When L is large and the sparse signals are rich enough
to uniquely define the dictionary, up to some permutations in columns of D and
atom sign flips, Gribonval et al. [12] suggest to solve the following problem to
recover the generative dictionary,

min |X|; st. DX =Y,DeD, (3)
X,D

where X, Y = [y,],e. are respectively coefficient and observation matrices, D
is the dictionary admissible set and || - ||1 = >_, ; [{}i,;] is an element-wise one
norm in the matrix space. An admissible set D, which constrains the amplitude,
has been used to resolve the scale ambiguity, which prevents the dictionary and
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the coefficients to scale by @ > 1 and 1/« respectively, to reduce the sparsity
penalty || - |1, while preserving the admissibility DX =Y. A common choice for
D is a fixed column ¢5 norm or a bounded column ¢ norm to make a convex
admissible set. A similar argument which was presented earlier, about the non-
differentiability of the objective in (1), can be presented here. Let ¢(X,D) =
Y — DX]|%, where || - || is the Frobenius norm. A new formulation for the
dictionary learning can be presented as,

I)I(li]gli/}(X,D) st. XeB], DeD, (4)

where BT := {X|||X]|1 < 7} is the ¢; ball with radius 7 and D is a convex ad-

missible set. Let ¢(7) similarly be the optimum value of (4) for each 7. Although
¢(7) is non-increasing and A is not empty, it might now be non-convex.

The gradient projection can be used again, as the constraints are convex
sets, to solve (4) for a fixed 7. The uniform convergence of this method can be
shown if Vi is locally Lipschitz continuous [15]. As D and B7, for a finite T,
are compact, it is straightforward to shows locally Lipschitz continuity of V.
However in practice this results in a small gradient step, which slow down the
convergence of the algorithm. Instead we use a block relaxation technique and
keep fixed X or D while gradient projecting the other parameter. It allows us to
choose a larger gradient step size at each step. The down side of this technique is
that we only can show the convergence of (X, D) to a set of accumulation points,
see for example [8, Appendices A and B]. The gradient steps in directions 6%1#
and ;21 are respectively smaller than (o,,,. (D))~ and (o,,,,(X))"?, where
O mae Operator finds the largest singular value.

Another difficulty with solving (4), with a fixed 7, is that the (global) mini-
mum might not be found using a gradient projection method. This raises a big
issue in the convergence proof of the overall algorithm, where the achievable
local minimum of ¢ (X, D) might increase in the next minimization step, after
increasing 7. To resolve this issue, we initiate the gradient projection algorithm
by the (local) minimum found using the previous 7. The algorithm is now guar-
anteed to reduce the objective after each gradient projection step [15]. As the
objective is lower bounded, the stability of the algorithm is guaranteed?.

When ¢(7) is convex, as it has been shown to be in the ¢; sparse representa-
tion, Newton’s method finds the root. This is not true in the dictionary learning
as ¢(7) might not be convex. We can use the non-increasing feature of ¢, by
updating (X, D) as explained earlier, and find the root by applying a line search
method. Although such an update scheme for 7 may not be as efficient as using
Newton’s method, i.e. more updates needed to find 7, we practically found that
the proposed line search method in Algorithm 1 converges fast. Note that when
T gets large enough, ¢(7) — 0 and the gradient of objective in (4), with respect
to each parameter, tends to zero. This is enough to show the convergence of the
algorithm to some local minima X*, D*.

2 The stability in a Lyapunov sense, which provides boundedness of the solutions (for
X, which might become infinitely large in general).



Dictionary Learning for Sparse Representations 5

Algorithm 1 Pareto Curve root finding based Dictionary Learning (PCDL)

1: initialization: 0 < § < 1, D, = Pp ([di,; = N(1,0)];,;), X- = D1Y,
7= X1 /N K, o= 15

2: while (|D-X, — Y[% —¢)® > .01c do
3: X9U=X,,DY=D,
4: for n=1to K do .

. _ wln— 2 n— n— ne
5: A =XM1 ogmi(mnfuwm 1T (DX - Y)
6: X" = Pgr (A)

. _ plnil 2 [n—1]x[n] [n]
8: D™ = Py (B)

9: end for

10:  if |D;X. —Y|% < ¢ then
11: T=T7/1

12: w=pt?

13:  else

14: X, =X¥ D, =D
15: end if

160 7=upr

17: end while
18: output: D,

Algorithm 1 presents a pseudocode for the Pareto Curve root finding based
Dictionary Learning (PCDL) method. It initiates with a random dictionary after
projecting onto the admissible set D, P5(-). The initial X, was selected to be
the minimum /5 norm inverse solution. The algorithm starts with a 7, which
is a division of the ¢; norm of the current solution, i.e. least square solution.
The “for” loop includes K iterations of gradient-projection steps. Pp; is the
projection onto the ¢; ball, with radius 7. The “if” part is the line search for
updating 7. For a given precision ¢, if the approximation error is less than this
precision, the algorithm steps back and choose a smaller scale factor . Otherwise
it updates (X;,D;). The algorithm stops when (|D.X, — Y||% — 6)2 < .01,
which practically seems to be an acceptable accuracy.

4 Simulations

We demonstrate the dictionary recovery with a toy example in the first experi-
ment. A normalized (normally distributed) random dictionary D € R2°%40 and
a set of L = 1280 training samples are generated, where the sparsity is changing
from 3 to 7 in different experiments. The locations and magnitude of non-zero
coefficients are respectively selected uniformly random and bounded in [.2,1]
with a random sign pattern. By following the definition of the atom recovery
from [7,8], we call an atom is recovered if the Euclidean distance of the atom
and one of the recovered atoms is not greater than 0.1v/2. The simulations were
repeated 5 times, with new initial random dictionaries, for K = 500. The aver-
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Fig. 1. Exact dictionary recovery with Fig. 2. Exact dictionary recovery us-
different approximation errors e. ing PCDL, MMDL, K-SVD and MOD
methods.

age atom recovery percentages for three different € = 0.1,20 and 50, which are
roughly corresponding to 42,19 and 11dB signal to noise ratios, are plotted in
Figure 1. The variance of the success is also shown by error bars. It shows that
although sparse approximation with high fidelity improves the success rate for
highly sparse coefficients, the noisy sparse approximation provides better recov-
ery with less sparse coefficients. The success of dictionary recovery using sparse
approzimations, i.e. large €, in a less sparse setting may be caused by the fact
that small coefficients, which may actually be zero in the generated sparse co-
efficients, are now assumed to be noise. The algorithm thus learn a dictionary
based on the coefficients which we are more confident to be non-zero. Figure
2 compares the proposed method, ¢ = 0.1, with some other dictionary learn-
ing methods. The A parameter, which is the Lagrange multiplier in the sparse
approximation [2], is 0.4 in K-SVD [7], MOD [6] and DLMM ([8]. An ¢; sparse
approximation with an extra de-biasing step, which is simply an orthogonal pro-
jection of the observed data onto the linear span of subdictionary indexed by
non-zero coefficients, has been used in the sparse approximation steps of these
methods. It demonstrates that PCDL performs almost the same as the best
current methods for very sparse and it also shows superior performance for less
sparse data. It deserves to mention that the computational complexity of PCDL
is often higher than the standard fixed-sparsity dictionary learning methods, as
it needs to iteratively reduce 7 and learn a dictionary within new ¢; ball. The
total computational cost of the algorithm directly depends on the number of it-
erations in the outer loop, i.e. “while” loop in Algorithm 1. In practice we found
that after 10 to 20 updates of 7, the algorithm converges to a solution in this
example. We also observed that the inner loop, which includes K iterations of
coefficients and dictionary updates, is faster than MMDL, for small \’s.



Dictionary Learning for Sparse Representations 7

Inital Dictionary 2X DCT Dictionary Learned Dictionary

Initial Dictionary 2X DCT Dictionary Learned Dictionary

0.01 0.0 0.0:
OMWMW mﬂu' R bk

-0.01 -0.01 -0.02
200 400 0 200 400 0 200 400

0.05 0.1 0.1
. Lol Ly
0 VMQM‘WM v'\ it
-0.05 -0.1
0

-0.1
200 400 0 200 400 0 200 400

0.02 002 0.02
0 W n R
[W, AN misan|
002, -0.02

-0.02
200 400 0 200 400 0 200 400
02 02 02

ST—— M I—

-02 -0.2 -0.2
0 200 400 0 200 400 0 200 400
0.1 02 02

l
| :
0 200 400 0 200 400

0.1
It | ]
-0.05 ‘ 701‘ ‘

0 200 400 o 200 400

0.02
0

-0.02

200 400
0 200 400
x10°

5

0.01
I

0 "
: i

-0.1 -0. -0.2
0 200 400 0 200 400 0 200 400
11 =15835.6879 11 =5115.0359 11 = 4676.1989

Fig. 3. Sparse representations of five
different training data, using three dif-
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Fig. 4. Sparse representations of five
different observed data, out of training
set, using three different dictionaries.

In the second experiment we applied PCDL to the dictionary learning for
audio data, which has been shown to have some sparse structures. We chose a
256 by 512 dictionary and randomly select 16384 audio samples, of length 256,
from a long audio record from BBC radio 3, which plays classical music. The
sparse representations of 5 random samples from training and some independent
data are respectively shown in Figure 3 and 4. The initial random, a two times
overcomplete DCT (oversampled frequency) and the learned dictionaries have
been used to find the sparse codes in the left to right columns respectively. The
total £1 of 16384 sparse codes are mentioned in the bottom line. The minimum ¢;
sparse representation, using the learned dictionary, provides good sparse codes,
even though it may not be the optimum dictionary. The consistency of the learn-
ing is also demonstrated, as the learned dictionary works well for independently
selected audio blocks. It is also demonstrated that the learned dictionary is su-
perior to the two times overcomplete DCT in providing less ¢;, with the same
€.

5 Conclusions

We have introduced a new dictionary learning framework for sparse representa-
tion. It is based on Pareto Curve root finding which has previously been used for
sparse representation. The new algorithm is guaranteed to be stable and we can
also show the convergence to a set of fixed points. As the new framework needs
to update 7 using a line search method, a more efficient method may provide
faster convergence using fewer updates of 7. We chose the current technique for
updating 7 as it provides a uniform reduction of a lower bounded objective.
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The proposed algorithm can also be used in a dictionary learning for sparse
approximation framework, by using an extra parameter ¢, which measures the
deviation from the exact representation subspace, i.e. DX = Y. This is par-
ticularly useful, when e is small, as current dictionary learning methods often
converge very slowly when using a small sparsity penalty, i.e. small \.
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