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Abstract—The problem of analysis operator learning (AOL) for
medium to large-scale signal blocks will be investigated here. Some signal
structures can only be discovered/learned if we consider a large block-size
for the signals. The goal here is to show that learning an operator does
not necessarily need to to be done in such a high dimensional space. We
present a new technique based on the projection onto the most significant
K-dimensional singular space of the training samples, K � n, to reduce
the computational complexity of the learning algorithm1.

I. INTRODUCTION

The AOL problem has recently received more attention, after
introduction of a new low-dimensional signal model, called the
cosparse model [1]. The (linear) analysis operator maps the signals
to the analysis space, where q elements are (approximately) zero,
i.e. (approximately) q-cosparse. In a finite dimensional setting, such
a linear operator can be represented with a tall matrix, which its
rows are called the analysers. Accordingly, we can formulate AOL
with an optimisation problem to find an operator Ω ∈ Ra×n, which
cosparsifies a given set of exemplars Y ∈ Rn×L [2] as follows,

min
Ω
‖ΩY‖1, s. t. Ω ∈ C (1)

where C is a constraint on the singular values of Ω and its row norms,
i.e. C = {Ω ∈ Ra×n : ΩT Ω = I, ∀i ‖ωi‖2 =

p
a
n
}. As this

problem has a non-smooth but convex objective, which is supposed
to be minimised over the intersection of two matrix manifolds,
we find a local optimum of (1) using a sub-gradient descent type
algorithm. [3] introduces a relaxation for the constraint to accelerate
the convergence of algorithm. However, computational complexity of
the relaxed formulation is still high for large-scale problems. As an
example, if we learn an operator for 8 × 8 image patches with 84

training samples, Relaxed AOL [3] only takes 30 seconds on a 2.6
GHz, 12 core Intel processor workstation using Matlab environment,
while such a learning for 32×32 patches and 2×323 training samples
takes more than two and a half days!

A. Low-dimensional Analysis Operator Learning

If there exists a low-dimensional structure in the training matrix
Y, we can reduce the computational complexity of the algorithm
by learning in such a low-dimensional space and map the operator
back to the original space. Let Y , Un×nΣn×n (VL×n)T be a
Singular Value Decomposition (SVD) of Y. The most significant
K-dimensional singular space can be found by keeping the largest
K singular values and setting the rest to be zero. If ΣK is such a
diagonal matrix, YK = UΣKVT is the closest rank K, n×L matrix
to the training corpus Y. When YK is a good approximation for Y,
which is what we observed for the natural image training samples
and a reasonable selection of K, we can reduce the dimensionality of
learning problem (1) by using eYK×L , {UT Y}(K), where {·}(K)

is a shrinking operator which selects the first K rows of the operand,
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as the training matrix and find the solution eΩ∗. We should now mapeΩ∗ to the original space using Ω∗ = eΩ∗UT , to find a solution Ω∗

for (1).
II. SIMULATION RESULTS

We chose some canonical images, i.e. Barbara, boat, Lena, finger-
print, flinstones, house and peppers, to learn the operator. The image
patches were randomly located in the reference images with 32× 32
(n = 1024), a = 2n, K = 162 and L = 164 and the RelaxedAOL
algorithm [3] iterated 105 times. We have shown the first K singular
vectors of Y:,1:8000, as some 32× 32 images in Figure 1, while they
capture more than 96% of the signal energy. When we project Y
onto this K-dimensional space and learn the operator, we will find a
rank-K operator after 22 hours using the mentioned machine, which
is shown in Figure 2, i.e. each 1024 length analyser reshaped to
a 32 × 32 image. We observe that the learned analysers have some
spatial-locality and a 2D Gabor structure. This is indeed an interesting
fact as we do not see such a structure in the (left) singular vectors.
Such a structure can not be explored in the small-size problems, e.g.
canonical 8× 8 patch size.

Fig. 1. The first 256 singular vectors of the training matrix.

Fig. 2. The learned analysers for the selected 256-dimensional singular
space of Figure 1.
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