Large but Rank-Deficient Analysis Operator Learning

Mehrdad Yaghoobi, Mike E. Davies

Institute for Digital Communications (IDCOM), The University of Edinburgh AGB, King's Buildings, Mayfield Road, Edinburgh, EH9 3JL Emails: {m.yaghoobi-vaighan,Mike.Davies}@ed.ac.uk

Abstract-The problem of analysis operator learning (AOL) for medium to large-scale signal blocks will be investigated here. Some signal structures can only be discovered/learned if we consider a large block-size for the signals. The goal here is to show that learning an operator does not necessarily need to to be done in such a high dimensional space. We present a new technique based on the projection onto the most significant K-dimensional singular space of the training samples, $K \ll n$, to reduce the computational complexity of the learning algorithm¹.

I. INTRODUCTION

The AOL problem has recently received more attention, after introduction of a new low-dimensional signal model, called the cosparse model [1]. The (linear) analysis operator maps the signals to the analysis space, where q elements are (approximately) zero, *i.e.* (approximately) q-cosparse. In a finite dimensional setting, such a linear operator can be represented with a tall matrix, which its rows are called the analysers. Accordingly, we can formulate AOL with an optimisation problem to find an operator $\Omega \in \mathbb{R}^{a \times n}$, which cosparsifies a given set of exemplars $\mathbf{Y} \in \mathbb{R}^{n \times L}$ [2] as follows,

$$\min_{\mathbf{\Omega}} \|\mathbf{\Omega}\mathbf{Y}\|_{1}, \text{ s.t. } \mathbf{\Omega} \in \mathcal{C}$$
(1)

where C is a constraint on the singular values of Ω and its row norms, *i.e.* $\mathcal{C} = \{ \mathbf{\Omega} \in \mathbb{R}^{a \times n} : \mathbf{\Omega}^T \mathbf{\Omega} = \mathbf{I}, \forall i \| \omega_i \|_2 = \sqrt{\frac{a}{n}} \}$. As this problem has a non-smooth but convex objective, which is supposed to be minimised over the intersection of two matrix manifolds, we find a local optimum of (1) using a sub-gradient descent type algorithm. [3] introduces a relaxation for the constraint to accelerate the convergence of algorithm. However, computational complexity of the relaxed formulation is still high for large-scale problems. As an example, if we learn an operator for 8×8 image patches with 8^4 training samples, Relaxed AOL [3] only takes 30 seconds on a 2.6 GHz, 12 core Intel processor workstation using Matlab environment, while such a learning for 32×32 patches and 2×32^3 training samples takes more than two and a half days!

A. Low-dimensional Analysis Operator Learning

If there exists a low-dimensional structure in the training matrix Y, we can reduce the computational complexity of the algorithm by learning in such a low-dimensional space and map the operator back to the original space. Let $\mathbf{Y} \triangleq \mathbf{U}_{n \times n} \Sigma_{n \times n} (\mathbf{V}_{L \times n})^{T}$ be a Singular Value Decomposition (SVD) of Y. The most significant K-dimensional singular space can be found by keeping the largest K singular values and setting the rest to be zero. If Σ_K is such a diagonal matrix, $\mathbf{Y}_K = \mathbf{U} \Sigma_K \mathbf{V}^T$ is the closest rank $K, n \times L$ matrix to the training corpus \mathbf{Y} . When \mathbf{Y}_K is a good approximation for \mathbf{Y} , which is what we observed for the natural image training samples and a reasonable selection of K, we can reduce the dimensionality of learning problem (1) by using $\widetilde{\mathbf{Y}}_{K \times L} \triangleq {\{\mathbf{U}^T \mathbf{Y}\}}^{(K)}$, where ${\{\cdot\}}^{(K)}$ is a shrinking operator which selects the first K rows of the operand,

¹This work was supported by EU FP7, FET-Open grant number 225913 and EPSRC grant EP/J015180/1.

as the training matrix and find the solution $\widetilde{\Omega}^*$. We should now map $\widetilde{\Omega}^*$ to the original space using $\Omega^* = \widetilde{\Omega}^* \mathbf{U}^T$, to find a solution Ω^* for (1).

II. SIMULATION RESULTS

We chose some canonical images, i.e. Barbara, boat, Lena, fingerprint, flinstones, house and peppers, to learn the operator. The image patches were randomly located in the reference images with 32×32 $(n = 1024), a = 2n, K = 16^2$ and $L = 16^4$ and the RelaxedAOL algorithm [3] iterated 10^5 times. We have shown the first K singular vectors of $\mathbf{Y}_{:,1:8000}$, as some 32×32 images in Figure 1, while they capture more than 96% of the signal energy. When we project Y onto this K-dimensional space and learn the operator, we will find a rank-K operator after 22 hours using the mentioned machine, which is shown in Figure 2, i.e. each 1024 length analyser reshaped to a 32×32 image. We observe that the learned analysers have some spatial-locality and a 2D Gabor structure. This is indeed an interesting fact as we do not see such a structure in the (left) singular vectors. Such a structure can not be explored in the small-size problems, e.g. canonical 8×8 patch size.

Fig. 1. The first 256 singular vectors of the training matrix.

Fig. 2. The learned analysers for the selected 256-dimensional singular space of Figure 1.

REFERENCES

- [1] S. Nam, M. E. Davies, M. Elad, and R. Gribonval, "The cosparse analysis model and algorithms," Applied and Computational Harmonic Analysis, vol. 34, no. 1, pp. 30-56, 2013.
- M. Yaghoobi, S. Nam, R. Gribonval, and Davies M., "Constrained [2] overcomplete analysis operator learning for cosparse signal modelling," IEEE Trans. on Signal Processing, vol. 61, no. 9, pp. 2341-2355, 2013.
- [3] M. Yaghoobi and M.E. Davies, "Relaxed analysis operator learning," in NIPS, Workshop on Analysis Operator Learning vs. Dictionary Learning: Fraternal Twins in Sparse Modeling, 2012.