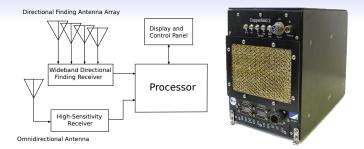
A Computationally Efficient Multi-coset Wideband Radar ESM Receiver

Mehrdad Yaghoobi and Mike E. Davies

Edinburgh Research Partnership in Signal and Image Processing Institute for Digital Communications, The University of Edinburgh

NATO SET-213 Specialist Meeting, 12 May, 2014



Engineering and Physical Sciences Research Council

Electronic Support Measures (ESM)

- Task: detecting all RF emitters to identify the presence of threats.
- It has a **passive** monitoring system.
- While ESM signals are very dense, e.g. can be hundreds of thousands of pulses per second, they have very sparse TF representations.
- ESM systems can be noise limited, rather than sparsity limited.

Conventional Techniques for ESM Receivers

- Instantaneous Frequency Measurements: limited spectral sensitivity.
- Rapid Frequency Sweeping ADC's: limited temporal sensitivity.
- Wideband Analog to Digital Converters: need multi GHz ADC's.
- Proposal: Sub-Nyquist Analog to Information Converter.

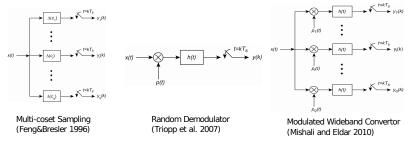
Sub-Nyquist Sampling

• Why?

- Sampling at the rate of Nyquist is difficult or costly in some applications, e.g. Wideband ADC's and Wideband Digital Receivers.
- It is a waste of resources, if we sample at a rate, much higher than the information rate
- An application specific sampling strategy, i.e. exploring signal structures.
- How?

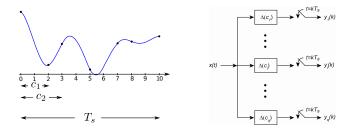
 - Using underlying signal structures, e.g. sparsity.
 - Incorporating non-uniform sampling (random?) in the sensing framework
 - On-linear reconstruction of signals.

Sub-Nyquist Sampling, cont

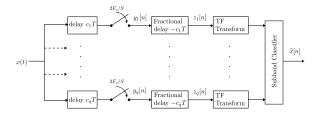

• Challenges?

- Analog Hardware: How efficiently can we design the analog part?
- Ocmputational Complexity: How efficient can we implement the non-linear recovery algorithm?
- Over Sensitivity: Sensitivity to the input noise?
- Robustness: How much the sub-Nyquist algorithm is sensitive to the signal model mismatch and circuit design tolerances.

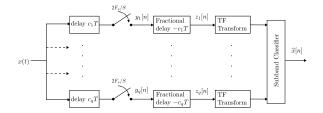
Sub-Nyquist Sampling Techniques



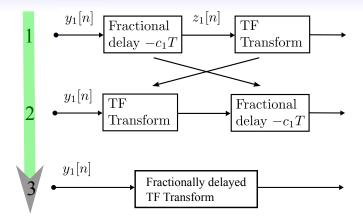
Technion Modulated Wideband Convertor Demonstrator


Multi-coset Sampling Framework

- Non-uniform sampling technique [Feng and Bresler, 1996].
- Sparse multiband signal model.
- A subspace method for reconstruction by Feng et al.
- A **convex optimisation** problem for reconstruction by [Mishali and Eldar 2009].

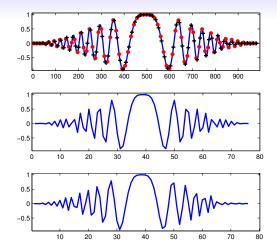

Proposed Sub-Nyquist Sampling Framework

- A Multi-coset sampling strategy.
- Avoiding any complicated operations *e.g.* SVD, ℓ_1 minimisation.
- The signal model has to fit into the ESM.



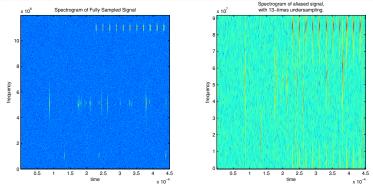
Components of Proposed Framework

- A bank of multi-coset channels: it has distinguished delays.
- Digital Fractional Delay (DFD) filters.
- *Time-Frequency transform:* STFT has currently been used.
- Subband Classifier: Composed of a linear operator (Harmonic Frame), followed by a simple maximum-absolute value operator.

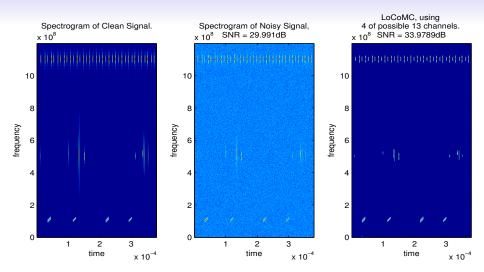


Digital Fractional Delay Implementation

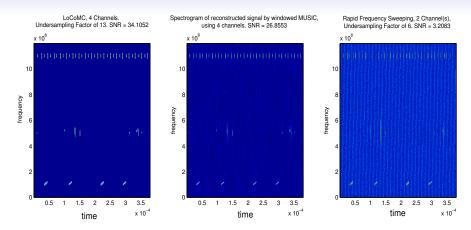
A Computationally Efficient Multi-coset Wideband Radar ESM Receiver


Discretisation of Time-Frequency Kernel

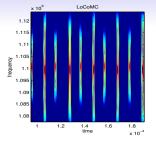
A Computationally Efficient Multi-coset Wideband Radar ESM Receiver

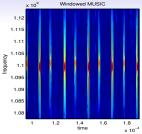

Assumptions and Properties

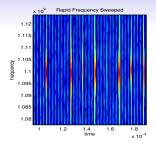
• Approximate Disjoint Aliased Support: different to sparsity.

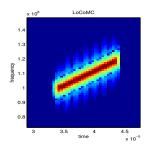

- No random sampling: optimal delay parameters from a Harmonic Equiangular Tight Frame (HETF).
- No DFD filter: absorption into TF transform.

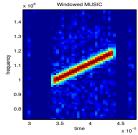
Evaluation with Radar ESM signals

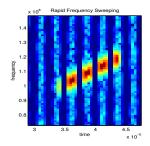

A Computationally Efficient Multi-coset Wideband Radar ESM Receiver


Comparison with Other Methods



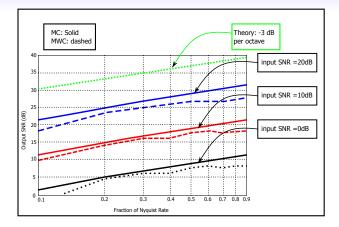

• Two overlapping ADC's with 1/6 of Nyquist sampling rate for RFS method.


Comparison with Rapid Frequency Sweeping



A Computationally Efficient Multi-coset Wideband Radar ESM Receiver

LoCoMC at a Glance:


Pros:

- Non-iterative: it may be pipelined.
- Can use only a few Multi-coset channels, e.g. as few as q = 2.
- Uses a different signal model, *i.e.* **ADAS**, which matches well to some classes of signals, *e.g.* ESM.
- Large Dynamic Range, *e.g.* 70 dB, which makes it suitable for the low probability of intercept signals.
- **Continuously monitoring** wideband RF signals, in a contrast with the rapid frequency sweeping technique.

• Cons:

- Noise folding: 3 dB processing gain loose per octave. A characteristic of sub-Nyquist sampling techniques.
- Needs a Fast "sampler". The "holder/tracker" can be slow.

Noise Folding in Sub-Nyquist Sampling

A Computationally Efficient Multi-coset Wideband Radar ESM Receiver

Conclusion and Future Work

• Conclusion:

- A low SWAP algorithm for radar ESM receiver.
- Exploring parsimonious structure of ESM signals.
- When ESM signals are ADAS, the signal recovery is guaranteed.
- Outperforms the MUSIC recovery algorithm in the given ESM signals.

• Future work:

- An optimal TF transform to maximise coherent processing gain.
- Sensitivity and robustness analysis.
- Pulse descriptor word extraction.
- Designing Hardware Demonstrator.

Thanks for your attention.