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Abstract — The problem of analysis operator learning can be formulated as a constrained optimisation problem. This problem has been approximately solved using projected gradient or geometric gradient descent methods. We
will propose a relaxation for the constrained analysis operator learning in this poster. The relaxation has been suggested here to, a) reduce the computational complexity of the optimisation and b) include a larger set of admissible
operators. We will show here that an appropriate relaxation can be useful in presenting a projection-free optimisation algorithm, while preventing the problem to become ill-posed. The relaxed optimisation objective is not convex
and it is thus not always possible to find the global optimum. However, when a rich set of training samples are given, we empirically show that the desired synthetic analysis operator is recoverable, using the introduced gradient
descent or conjugate gradient algorithms.
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Constrained Analysis Operator Learning Formulation

The aim of analysis operator learning is to find an operator Ω ∈ Ra×n, adapted to a set of observations of the signals Y = [yi] ∈
Rn×l,yi = xi+ni, where ΩY is sparse [1], see figure (a). In this setting, Y is called (approximately) cosparse. With `1 sparsity measure,
a formulation for finding Ω is as follows,

min
Ω,X
‖ΩX‖1 +

λ

2
‖Y −X‖2F , s. t. Ω ∈ C

where C is a constraint. We need C, to avoid trivial solutions, e.g. Ω = 0.

• Row norm (UN) constraints: the optimum solution is obtained by repeating the best row ω∗ , i.e., Ω∗1 := [ωi = ω∗]T
i∈[1,a]

, see figure (b).

• Row norm + full rank constraints: the optimum solutions have very small condition numbers, e.g. PCF{εA + Ω∗1}, where PCF , A and
ε respectively are row normalisation, a random Gaussian matrix and a very small constant, see figure (c).

• Tight frame (TF) constraint: the optimum solutions are the zero-padded bases, see figure (d).

• Proposed constraint: Uniform Normalised Tight Frame (UNTF):

C = {Ω ∈ Ra×n : ΩTΩ = I, ∀i ‖ωi‖2 =

√
a

n
}.

• Suggested solver: Alternating Minimisation with a Projected Subgradient type algorithm for updating Ω.

• Issues:

1. No analytical way to project onto UNTF → no convergence proof.

2. Projection onto TF needs a full SVD calculation → expensive implementation and non-scalable algorithm.

3. `1 term is not differentiable → slow convergence of the projected subgradient algorithm.

Relaxed Analysis Operator Learning

Suggested Relaxation and a New Formulation

•Relaxing the objective: using a convex, but continuously differentiable, sparsity constraint
g(ΩY)=

∑
i,j ζ({ΩY}i,j), for ζ defined as ζ(x) = |x| − s ln(1 + |x|/s), s ∈ R+, s� 1 [2].

•Relaxing the constraint: using quartic constraints ‖ΩTΩ − I‖2
F ≤ εTF and

(
ωTi ωi − m

n

)2
≤

εUN, ∀i ∈ [1, n].

•Relaxed AOL Formulation: An unconstrained objective is generate by using two Lagrange mul-
tipliers γ and θ [3]:

f (Ω,X) = g(ΩX) +
λ

2
‖Y −X‖2

F +
γ

4
‖ΩTΩ− I‖2

F +
θ

4

∑
i

(
ωTi ωi −

m

n

)2

.

Relaxed Analysis Operator Learning with
Alternating Minimisation

initialisation: Ω[0], X[0] = Y, k = 0,
while not converged do

Ω[k+1] =argminΩ∈C g(ΩX[k])+γ
4‖Ω

TΩ−I‖2
F + θ

4

∑
i

(
ωTi ωi − m

n

)2
,

(using a Gradient Descent or a Conjugate Gradient method)

X[k+1] = argminX g(Ω[k+1]X) + λ
2‖Y −X‖2

F
(Convex program! Using a parameter splitting and Augmented Lagrangian MM)

k = k + 1
end while.

Simulations and Summary

Relaxed Synthetic Operator Recovery

• Learning Ω ∈ R24×16 from Y ∈ R16×576, q = 10 cosparse exemplars with respect to a
reference UNTF operator Ω0.

• Sorted `2 norms of the rows of learned operator using a TF penalty (θ = 0) (left).
⇒ The learned operator is a zero-padded orthogonal basis.

• Singular values of the learned operator using a UN penalty (γ = 0) (middle).
⇒ The learned operator is a rank deficient operator.

• Normalised inner-products between the rows of the synthetic reference operator Ω0 and
the corresponding rows in the learned operator using a UNTF penalty (right).
⇒ The reference operator is approximately recovered.

Relaxed AOL for the Image Patches
• Learning an operator for the 8× 8 image patches, using a set of standard images (’Bar-

bara’, ’boat’, ’Lena’, ’fingerprint’, ’flinstones’, ’house’ and ’peppers’) as the image ex-
emplars. Ω was two times overcomplete and we used 4192 training samples.

• A noise-less setting has been used for learning, i.e. X = Y.

• Gradient Descent and (Nonlinear) Conjugate Gradient methods, with a line-search, have
been used for the optimisation based upon Ω.

• Although each iteration of CG is computationally more costly, it converges faster in
practice. The total simulation time for CG was less than GD.
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Summary
• The proposed relaxed analysis operator learning helps us to

have faster learning algorithm, while allowing a larger set of
admissible operators.

• UN and TF penalties are necessary for a reliable operator
learning. Over-relaxation of these constraints may lead us
to some trivial solutions.

• The relaxed formulation allows us to use CG or GD methods
for the operator update stage of the AOL.

• The proposed relaxed AOL algorithm converges significantly
faster, as we can now learn an operator for the image patches
in less than a minute, using a standard workstation!
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