

Relaxed Analysis Operator Learning

Mehrdad Yaghoobi and Mike Davies

Institute for Digital Communications (IDCom), the University of Edinburgh, EH9 3JL, UK yaghoobi@ieee.org, mike.davies@ed.ac.uk

Abstract — The problem of analysis operator learning can be formulated as a constrained optimisation problem. This problem has been approximately solved using projected gradient or geometric gradient descent methods. We will propose a relaxation for the constrained analysis operator learning in this poster. The relaxation has been suggested here to, a) reduce the computational complexity of the optimisation and b) include a larger set of admissible operators. We will show here that an appropriate relaxation can be useful in presenting a projection-free optimisation algorithm, while preventing the problem to become ill-posed. The relaxed optimisation objective is not convex and it is thus not always possible to find the global optimum. However, when a rich set of training samples are given, we empirically show that the desired synthetic analysis operator is recoverable, using the introduced gradient descent or conjugate gradient algorithms.

Constrained Analysis Operator Learning Formulation

The aim of analysis operator learning is to find an operator $\Omega \in \mathbb{R}^{a imes n}$, adapted to a set of observations of the signals $\mathbf{Y} = [\mathbf{y}_i] \in \mathbb{R}^{n imes n}$ $\mathbb{R}^{n \times l}$, $\mathbf{y}_i = x_i + n_i$, where $\mathbf{\Omega}\mathbf{Y}$ is sparse [1], see figure (a). In this setting, \mathbf{Y} is called (*approximately*) cosparse. With ℓ_1 sparsity measure, a formulation for finding Ω is as follows,

$$\min_{\mathbf{\Omega},\mathbf{X}} \|\mathbf{\Omega}\mathbf{X}\|_1 + \frac{\lambda}{2} \|\mathbf{Y} - \mathbf{X}\|_F^2, \text{ s.t. } \mathbf{\Omega} \in \mathcal{C}$$

where C is a constraint. We need C, to avoid trivial solutions, *e.g.* $\Omega = 0$.

• Row norm (UN) constraints: the optimum solution is obtained by repeating the best row ω^* , i.e., $\mathbf{\Omega}_1^* := [\omega_i = \omega^*]_{i \in [1,a]}^T$, see figure (b).

• Row norm + full rank constraints: the optimum solutions have very small condition numbers, e.g. $\mathcal{P}_{\mathcal{C}_F} \{ \epsilon \mathbf{A} + \mathbf{\Omega}_1^* \}$, where $\mathcal{P}_{\mathcal{C}_F}$, \mathbf{A} and ϵ respectively are row normalisation, a random Gaussian matrix and a very small constant, see figure (c).

• Tight frame (TF) constraint: the optimum solutions are the zero-padded bases, see figure (d).

• Proposed constraint: Uniform Normalised Tight Frame (UNTF):

$$\mathcal{C} = \{ \mathbf{\Omega} \in \mathbb{R}^{a \times n} : \mathbf{\Omega}^T \mathbf{\Omega} = \mathbf{I}, \forall i \| \omega_i \|_2 = \sqrt{\frac{a}{n}} \}$$

• Suggested solver: Alternating Minimisation with a Projected Subgradient type algorithm for updating Ω . • Issues:

1. No analytical way to project onto UNTF \rightarrow **no convergence** proof.

2. Projection onto TF needs a full SVD calculation \rightarrow expensive implementation and non-scalable algorithm.

3. ℓ_1 term is not differentiable \rightarrow **slow convergence** of the projected subgradient algorithm.

Relaxed Analysis Operator Learning

Suggested Relaxation and a New Formulation

• Relaxing the objective: using a convex, but continuously differentiable, sparsity constraint $g(\Omega \mathbf{Y}) = \sum_{i,j} \zeta(\{\Omega \mathbf{Y}\}_{i,j})$, for ζ defined as $\zeta(x) = |x| - s \ln(1 + |x|/s), s \in \mathbb{R}^+, s \ll 1$ [2]. • Relaxing the constraint: using quartic constraints $\| \mathbf{\Omega}^T \mathbf{\Omega} - \mathbf{I} \|_F^2 \le \epsilon_{\scriptscriptstyle TF}$ and $\left(\omega_i^T \omega_i - \frac{m}{n} \right)^2 \le \epsilon_{\scriptscriptstyle TF}$

Relaxed Analysis Operator Learning with Alternating Minimisation

initialisation: $\Omega^{[0]}, \mathbf{X}^{[0]} = \mathbf{Y}, k = 0$, while not converged do

 $\forall i \in [1, n].$ $\epsilon_{\scriptscriptstyle UN},$

• Relaxed AOL Formulation: An unconstrained objective is generate by using two Lagrange multipliers γ and θ [3]:

$$f(\mathbf{\Omega}, \mathbf{X}) = g(\mathbf{\Omega}\mathbf{X}) + \frac{\lambda}{2} \|\mathbf{Y} - \mathbf{X}\|_F^2 + \frac{\gamma}{4} \|\mathbf{\Omega}^T\mathbf{\Omega} - \mathbf{I}\|_F^2 + \frac{\theta}{4} \sum_i \left(\omega_i^T \omega_i - \frac{m}{n}\right)^2.$$

$$\mathbf{X}^{[n+1]} = \operatorname{argmin}_{\mathbf{\Omega} \in \mathcal{C}} g(\mathbf{X}^{[n]}) + \frac{1}{4} ||\mathbf{X}^{T}\mathbf{X}^{-1}||_{F}^{2} + \frac{1}{4} \sum_{i} \left(\omega_{i}^{T} \omega_{i} - \frac{m}{n} \right)$$
(using a Gradient Descent or a Conjugate Gradient method)
$$\mathbf{X}^{[k+1]} = \operatorname{argmin}_{\mathbf{X}} g(\mathbf{\Omega}^{[k+1]}\mathbf{X}) + \frac{\lambda}{2} ||\mathbf{Y} - \mathbf{X}||_{F}^{2}$$
(Convex program! Using a parameter splitting and Augmented Lagrangian MM)
$$k = k + 1$$
end while.

Simulations and Summary

Summary

- The proposed relaxed analysis operator learning helps us to have faster learning algorithm, while allowing a larger set of admissible operators.
- UN and TF penalties are necessary for a reliable operator learning. Over-relaxation of these constraints may lead us to some trivial solutions.
- The relaxed formulation allows us to use CG or GD methods for the operator update stage of the AOL.
- The proposed relaxed AOL algorithm converges significantly faster, as we can now learn an operator for the image patches in less than a minute, using a standard workstation!

Relaxed AOL for the Image Patches

• Learning an operator for the 8×8 image patches, using a set of standard images ('Barbara', 'boat', 'Lena', 'fingerprint', 'flinstones', 'house' and 'peppers') as the image exemplars. Ω was two times overcomplete and we used 4192 training samples.

• A noise-less setting has been used for learning, *i.e.* $\mathbf{X} = \mathbf{Y}$.

• Gradient Descent and (Nonlinear) Conjugate Gradient methods, with a line-search, have been used for the optimisation based upon Ω .

• Although each iteration of CG is computationally more costly, it converges faster in practice. The total simulation time for CG was less than GD.

Acknowledgement

This work was supported by EU FP7, FET-Open grant number 225913 and EPSRC grant EP/J015180/1. MED acknowledges support of his position from the Scottish Funding Council and their support of the Joint Research Institute with the Heriot-Watt University as a component part of the Edinburgh Research Partnership in Engineering and Mathematics.

[1] M. Yaghoobi, S. Nam, R. Gribonval and M. E. Davies, "Constrained Overcomplete Analysis Operator Learning for Cosparse Signal Modelling", submitted, http://arxiv.org/abs/1205.4133.

[2] M. Elad, B. Matalon and M. Zibulevsky "Coordinate and Subspace Optimization Methods for Linear Least Squares with Non-quadratic Regularization", ACHA, vol.23, num. 3, pp 346-367, 2007.

[3] M. Yaghoobi and M. E. Davies, "Relax and Accelerate: A Generalised Analysis Operator Learning Algorithm", in preparation.