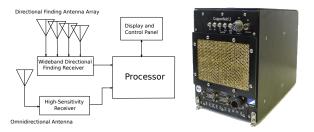
# An Efficient Implementation of the Low-Complexity Multi-Coset Sub-Nyquist Wideband Radar Electronic Surveillance

# Mehrdad Yaghoobi, Bernard Mulgrew and Mike E. Davies

Edinburgh Research Partnership in Signal and Image Processing
Institute for Digital Communications,
The University of Edinburgh

SSPD, Edinburgh, 9 September, 2014








#### University Defence Research Collaboration (UDRC) Signal Processing in a Networked Battlespace

## Electronic Surveillance (ES)



- **Task:** detecting all RF emitters to identify the presence of threats.
- It has a passive monitoring system.
- While Radar ES signals are very dense, e.g. can be hundreds of thousands of pulses per second, they have very sparse TF representations.
- ES systems can be noise limited, rather than sparsity limited. <sup>2</sup>

#### Conventional Radar ES Receivers



- Instantaneous Frequency Measurements: limited spectral sensitivity.
- Rapid Frequency Sweeping ADC's: limited temporal sensitivity.
- Wideband Analog to Digital Converters: need multi GHz ADC's.
- Proposal: Sub-Nyquist Analog to Information Converter.

#### Sub-Nyquist Sampling

#### Why?

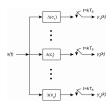
- Sampling at the rate of Nyquist is difficult or costly in some applications, e.g. Wideband ADC's and Wideband Digital Receivers.
- It is a waste of resources, if we sample at a rate, much higher than the information rate.
- An application specific sampling strategy, i.e. exploring signal structures.

#### How?

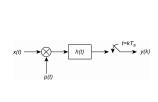
- Using underlying signal structures, e.g. sparsity.
- Incorporating non-uniform sampling (random?) in the sensing framework.
- Non-linear reconstruction of signals.

## Sub-Nyquist Sampling, cont

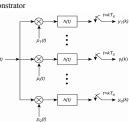
#### • Challenges?


- Analog Hardware: How efficiently can we design the analog part?
- 2 Computational Complexity: How efficient can we implement the non-linear recovery algorithm?
- Noise Sensitivity: Sensitivity to the input noise?
- Robustness: How much the sub-Nyquist algorithm is sensitive to the signal model mismatch and circuit design tolerances.

## University Defence Research Collaboration (UDRC) Signal Processing in a Networked Battlespace


## Sub-Nyquist Sampling Techniques

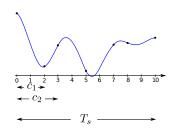


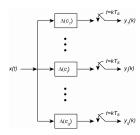

Technion Modulated Wideband Convertor Demonstrator



Multi-coset Sampling (Feng&Bresler 1996)

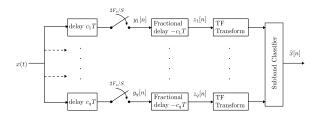



Random Demodulator (Triopp et al. 2007)



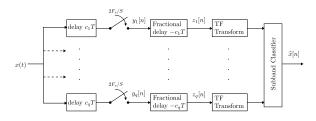

Modulated Wideband Convertor (Mishali and Eldar 2010)

## Multi-coset Sampling Framework

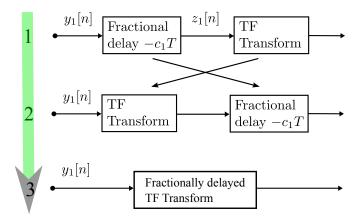

- Non-uniform sampling technique [Feng and Bresler, 1996].
- Sparse multiband signal model.
- A subspace method for reconstruction by Feng et al.
- A convex optimisation problem for reconstruction by [Mishali and Eldar 2009].



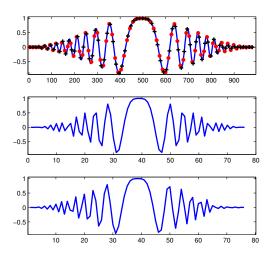



#### Proposed Sub-Nyquist Sampling Framework

- A Multi-coset sampling strategy.
- Avoiding any complicated operations e.g. SVD,  $\ell_1$  minimisation.
- The signal model has to fit into the Radar ES.

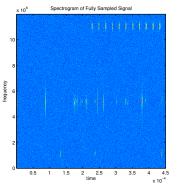


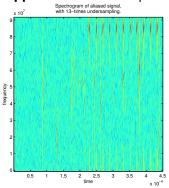

#### Components of Proposed Framework


- A bank of multi-coset channels: it has distinguished delays.
- Digital Fractional Delay (DFD) filters.
- Time-Frequency transform: STFT has currently been used.
- Subband Classifier: Composed of a linear operator (Harmonic Frame), followed by a simple maximum-absolute value operator.



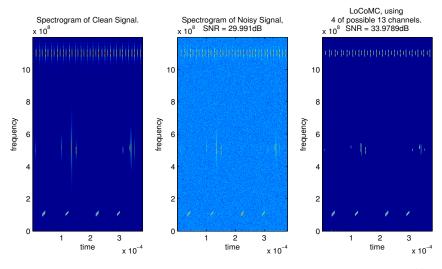
## Digital Fractional Delay Implementation



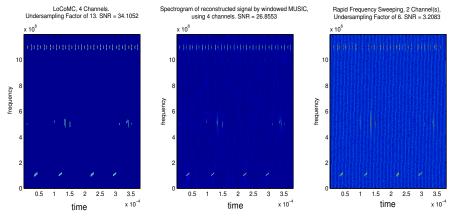


## Discretisation of Time-Frequency Kernel



#### Assumptions and Properties

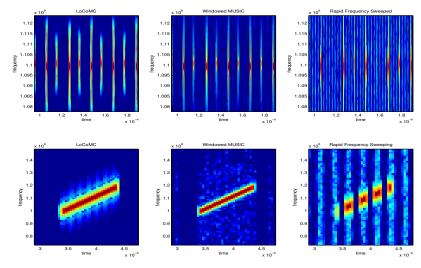

Approximate Disjoint Aliased Support: different to sparsity.






- No random sampling: optimal delay parameters from a Harmonic Equiangular Tight Frame (HETF).
- No DFD filter: absorption into TF transform.

## Evaluation with Radar ES signals




## Comparison with Other Methods

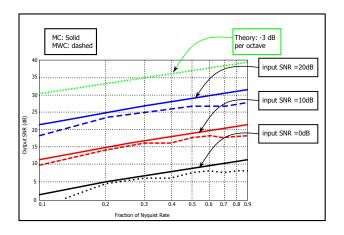


• Two overlapping ADC's with 1/6 of Nyquist sampling rate for RFS method.

## Comparison with Rapid Frequency Sweeping



#### LoCoMC at a Glance:


#### Pros:

- Non-iterative: it may be pipelined.
- Can use only **a few** Multi-coset channels, e.g. as few as q = 2.
- Uses a different signal model, *i.e.* **ADAS**, which matches well to some classes of signals, *e.g.* Radar ES.
- Large Dynamic Range, e.g. 70 dB, which makes it suitable for the low probability of intercept signals.
- **Continuously monitoring** wideband RF signals, in a contrast with the rapid frequency sweeping technique.

#### Cons:

- Needs a Fast "sampler". The "holder/tracker" can be slow.
- Noise folding: 3 dB processing gain loose per octave. A characteristic of sub-Nyquist sampling techniques.

## Noise Folding in Sub-Nyquist Sampling



#### Conclusion and Future Work

#### Conclusion:

- A low SWAP algorithm for Radar ES receiver.
- Exploring parsimonious structure of ES signals.
- When ES signals are ADAS, the signal recovery is guaranteed.
- Outperforms the MUSIC recovery algorithm in the given ES signals.

#### • Future work:

- CFAR analysis for parameter selection.
- Pulse descriptor word extraction.
- Sensitivity and robustness analysis.

#### We gratefully acknowledge the support from:





# THALES

#### Thanks for your attention.

