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Abstract

The resolution of capacitive touch sensors is not sufficient
for some sensing applications. The coarse resolution of a
sensor with a regular grid is limited by the half distance be-
tween two adjacent layer-crossovers. Increasing the density
of such layer-crossovers, improves the resolution of touch
signals. While this technique needs some modification in
the hardware, it does not necessarily guarantee that the cor-
responding estimated touch locations are more accurate.
We explore the problem of resolution enhancement for the
multitouch sensors here, using the sparsity pattern of the
touch signals. This is called the super-resolution as the
goal is to enhance the sensor resolution, while not chang-
ing the sensing hardware, and only incorporates some prior
information about the input. The super-resolution problem
can be computationally very costly. The aim is to present
a rather simple algorithm to run in the real-time. This
has been achieved by exploiting a structured sparse rep-
resentation, which allows a computationally simple super-
resolution algorithm.

1 Introduction

Touch sensors are becoming more accessible in modern
electronic devices. The touch sensors are now embedded
into the screens to easily capture the human finger touches,
as an input to the systems. There has been a significant
progress in designing various hardwares to capture such fin-
ger touches [16], where capacitive touch sensors are among
the most successful and widely used sensors. Some of these
sensors can handle multitouch sensing by detecting the fin-
ger touches on a regular grid of sensors. As the locations
of the finger touches are arbitrary located on the surface of
the sensor, the touch locations are actually in the continu-
ous domain. The process of touch sensing with a regular
grid, can be interpreted as the sampling of such touch sig-
nals. The process of reconstruction of the original touch
signal using the Whittaker-Shannon interpolation formula
is not very efficient, as the input signal does not satisfy the
necessary condition of exact reconstruction in the classical
Shannon-Nyquist sampling theorem.
The resolution of the touch sensor is defined as the small-
est identifiable change in the touch locations. For the single
touch sensing, there exist techniques to improve the reso-
lution by interpolating the values of the adjacent sensing

locations [14]. These techniques essentially rely on the fact
that there exists only a single touch. In a general setting
of multitouch sensing, these techniques are not successful.
On the other hand, the problem of resolution enhancement
in this setting is indeed very ill-posed, if we do not incor-
porate any extra information about the input.
The touch signals generally have some sparse structures.
The reason is that we are normally looking for a certain
number of touches, which can vary in different devices.
Such signals actually have limited degrees of freedom, or
a finite rate of innovation (FRI) [18]. They can be recov-
ered using the Prony’s method, and solving a Vandermonde
system, which is a bad-conditioned linear system. Recover-
ing the signal using FRI model is thus sensitive to the input
noise. A noise resilient version of the FRI recovery algo-
rithm is presented in [8], which uses an iterative denoising
algorithm, called the Cadzow’s iterative denoising [3]. This
technique is based on iterative projections on the rank-K
and Toeplitz matrix sets, which needs some Singular Value
Decompositions and it is thus computationally very expen-
sive to our application.

1.1 Prior Work

The problem of resolution enhancement for capacitive
touch sensors for single touches, was investigated in [14].
This technique will briefly be explored in Section 3.1. Al-
though an extension of this interpolation method, using a
more complicated model for the touch sensors, is possible,
see for example [10], here we use a sparse model for touch
signals to not only improve the resolution of single touch
signals, but also to consider a more general multitouch
scenario.
The problem of recovering signals with a FRI, which has
been explored in [18], can be used with Gaussian sam-
pling kernel [8]. Such a sampling strategy well fits to
the touch sensing application. By adding the computa-
tional cost of denoising, the computational cost of algo-
rithm grows up significantly. We therefore chose a different
approach, which has similarities with the single-exposure
super-resolution, using a sparsity model for the signals [4].
Specifically, we use a similar structured sparsity model to
solve a sensing problem with a coherent linear sensing op-
erator. Moreover, we present two practical algorithms for
touch location identification, which do not involve any infi-
nite dimensional optimisation problems, while considering
the positivity of touches.
The idea of using sparsity in the capacitive touch sensors,



has also recently been used for the compressive touch sens-
ing in [11, 12]. Luo et al. proposed a technique to acceler-
ate the sensing process, which needs some sensor hardware
modifications, i.e. electrically charging a row of sensors by
some random values and measuring the total charge. Here
we propose an essentially different technique to improve
the resolution of current sensors, without changing the sen-
sor hardware.

1.2 Contribution

In this paper, we investigate the problem of single-exposure
super-resolution multitouch sensing. We initially formu-
late the touch signals by a linear additive model, with the
Gaussian type elementary functions. This model is inspired
from real data observation. Such a model can be used for
canonical sparse approximation, which would not be very
successful, as the generative model is highly coherent, i.e.
many elementary functions are similar and distinguishing
each of them from the neighbours, is difficult. We incor-
porate a separate touch signal model to assist the sparse
recovery. The new sparse signal model has been used to
obtain super-resolution multitouch sensing. Although the
standard sparse approximation has already been used for
the image super-resolution [20], it will fail to recover an
(approximate) super-resolution signal using a coherent sig-
nal model. We here show that the canonical barriers in such
an image super-resolution can be moved using a struc-
tured sparsity model.

2 Problem Formulation

We assume that the grid is rectangular and regular, i.e.
equidistant, and each finger touch triggers more than a sin-
gle layer-crossover. This is what normally happens, as the
size of fingers are larger than the distance between two
layer-crossovers. In Figure 1, we show the signal received
using a typical 3.5’ capacitive touchpad of size 9 × 12,
which shows a set of points on the grid, triggered by a single
finger touch. We assume that each touch can be modelled as
a 2D Gaussian function, which is roughly what is observed
in Figure 1.
The capacitive change caused by a set of touches, can be
modelled in the continuous domain by,

t(x, y) ≈
∑

1≤i≤K

aie
(x−xi)

2+(y−yi)
2

σ2 (1)

where K is the number of touches and (xi, yi) is the cen-
tre of the ith touch. If the grid is M × N and, the dis-
tance between two adjacent layer-crossovers, which is also
called the pitch spacing, is ∆, the centre of touches are lo-
cated in ((0.5 +m)∆, (0.5 +n)∆), where m ∈ [0,M ] and
n ∈ [0, N ]. We sense, i.e. sample, t on this grid, which
gives us MN samples {t(m,n)}1≤m≤M,1≤n≤N . Sampling
of t(x, y), with the capacitive touch sensors, can be seen
as the convolution of d(x, y) =

∑
1≤i≤K aiδxi,xj (x, y),

where δxi,yi(x, y) is the delta Dirac at the location (xi, yi),

with the Gaussian kernel g(x, y) , e
x2+y2

σ2 . We can now

Figure 1: The sensed signal by a 9× 12 capacitive touch sensor,
when a single finger touches the sensor.

Figure 2: A schematic diagram of a part of touch-sensing grid.
Two touches happen at locations (x1, y1) and (x2, y2).

represent the sampling operator Tg , which is the sampling
of the convolution operation with the kernel g, as follows,

z = Tgd(x, y), z ∈ RMN . (2)

The task is now to recover d(x, y), or only (xi, yi)’s, as
accurate as possible, given the sensed vector z. As the
delta Dirac functions δxi,yi(x, y)’s can arbitrary locate at
any place in

(
(∆

2 ,∆M + ∆
2 ), (∆

2 ,∆N + ∆
2 )
)
, the resolu-

tion of the recovered locations (xi, yi) is bounded by ∆
2 ,

using a Whittaker-Shannon type interpolation formula.
The process of finding the locations of touches, is often
simplified by finding the closest points on the grid, assum-
ing that each layer-crossover has only one finger touch in
its neighbourhood. Such an assumption is necessary for
a successful multitouch sensing, as violating this condi-
tion, can cause two different touches be found at a single
layer-crossover. A schematic diagram of a part of a regu-
lar grid touch-sensor, when two touches occur at the loca-
tions (x1, y1) and (x2, y2), is drawn in Figure 2. The neigh-
bourhood of the layer-crossovers (αi, βi) and (αj , βj) are
shown by the dashed boxes in this figure.

2.1 Peak Picking for Touch Sensing

An intuitive method to identify the locations of touches is
to find the peaks on the sensor grid [14]. Here, we assume



that touches are far from each other, which improves the
success of identification of the delta Dirac locations.

2.2 Sparse Signal Model for Touch Sensing

An alternative approach to boost the performance of peak
picking, is to incorporate the fact that each finger-touch can
actually be modelled with a Gaussian shape signal. We can
also incorporate the fact that the magnitudes ai’s are all pos-
itive.
When we assume a Gaussian model for each touch, a good
approximate signal model is a discrete Gaussian, centred
on top of each layer-crossover. Let D be a matrix with the
(i, j)th element equal to γg(αi − αj , βi − βj), which rep-
resents the discrete 2D Gaussian functions centred on the
grid and γ =

√
2
πσ2 is the normalisation factor. We here

try to find a θ such that observed signal z is close to Dθ.
For the multitouch sensing problem, d(x, y) is sparse, i.e.
K � MN . We therefore seek a K-sparse θ. It is worth
mentioning that D ∈ RMN×MN , which is called a dic-
tionary, is a square matrix, the sparsity assumption of θ is
necessary as D is mostly ill-conditioned and the observa-
tion is often noisy. The touch locations can thus be found
by solving the following program,

min
θ∈C
‖z−Dθ‖22, s. t. ‖θ‖0 ≤ K (3)

where ‖ · ‖0 counts the non-zero elements of the operand
and the admissible set C is RMN

+ . The active elements
of θ, represent the possible locations of the touches on
the grid. Solving (3) is computationally expensive, which
can approximately be solved some greedy methods, e.g.
Matching Pursuit (MP) [13]. A simple alternative is hard-
thresholding, which is keeping the K largest coefficients
of DT z, and letting the rest to be zero [7]. A key charac-
teristic of the dictionary is its coherence, which is defined
as µ = maxi,j |dTi dj | [17]. The coherence of a dictio-
nary actually shows that how similar are the columns of the
dictionary, which are called the atoms. Showing the exact
touch locations recovery using the coherence based analy-
sis [9, 17] is not possible here, as the dictionary has a very
high coherence, which makes the exact recovery almost im-
possible. We here need to incorporate some extra signal
models.
If two (xi, yi)’s are very close, the recovery is more difficult
and noise sensitive, as the corresponding closest (αi, βi)’s
are very similar, i.e. |dTi dj | ≈ 1 for those atoms. For-
tunately, this case is not happening here, because of the
anatomy of human fingers. If we name the minimum dis-
tance of two delta Dirac R, a reasonable assume is that R
is greater than 2∆, which is also the assumption in [4] for
super-resolution spectral sensing, to derive the exact recov-
ery of input sparse spectrum. Considering the fact that there
is a distanceR between two non-zero elements of θ, we can
reduce the error of touch locating, using a new admissible
set C, which excludes such unwanted sparse vectors. This
type of sparse approximations is called Model Based Sparse
Approximations [1].

3 Super-resolution Touch Sensing

The resolution achieved by finding the closest points on the
grid, which is called the coarse resolution of the sensor,
is not satisfactory for many applications. Super-resolution
techniques are introduced to compensate the errors caused
by the grid discretization, or simply reduce the aliasing ef-
fect. Here, these techniques are based on allowing the cen-
tres of touches locate off the sensing gird. We investigate
two different approaches to super-resolution, in the next
two subsections.

3.1 Linear Interpolation for Resolution Enhancement

The coarse resolution of peak picking can be improved by
an interpolation post processing, e.g. [10]. O’Conner sug-
gests a simple linear interpolation technique for resolution
enhancement in [14]. In his method, we first find the peaks
and their four neighbour points on the grid. Let (αi, βi)
be the ith detected peak and z(αi,βi)

be the corresponding
sensed value. We can now interpolate between the sensed
points and find a new centre for the touch, using the follow-
ing formula1:

x̂i =αi +
∆
2

(
z(αi+1,βi)

− z(αi−1,βi)

ζxi

)
ŷi =βi +

∆
2

(
z(αi,βi+1) − z(αi,βi−1)

ζyi

) (4)

where ζxi = max(|z(αi,βi)
− z(αi+1,βi)

|, |z(αi,βi)
−

z(αi−1,βi)
|) and ζyi = max(|z(αi,βi)

− z(αi,βi+1)|, |z(αi,βi)
−

z(αi,βi−1)|). This interpolation is based on a piecewise lin-
ear model for the touches. More accurate interpolation are
possible using conventional non-linear interpolations, e.g.
Cubic splines [10].

3.2 Super-resolution Touch Sensing using the
Sparsity Model

An approach to improve the resolution of sparsity based
touch sensing is to assume that (xi, yi)’s are located on a
finer grid than the sensing grid. This type of sparsity based
super-resolution is called the single frame, or single expo-
sure, super-resolution [5,6]. In this setting, we can reformu-
late (3) using an overcomplete dictionary D ∈ RMN×P ,
where P > MN . If we generate a D over a regular
grid, the centres of the Gaussian functions locate on some
(α̂i, β̂i)’s, where 1 ≤ i ≤ P . If the sparse vector θ ∈ RP+,
we need to solve the problem (3) with the overcomplete
dictionary D to identify the possible touch locations.
As there exist correlated atom pairs in D, i.e. D has a large
µ, solving (3) can essentially fail in recovering the desired
locations, if the number of touches is more than one and
we do not incorporate extra prior information. We again
restrict the locations of non-zero elements in C to be not
closer thanR. We will empirically demonstrate that the new
formulation indeed helps us to reduce the location recovery
error.

1The formulation here is slightly different to [14].



4 Algorithms
Solving (3) is more difficult than a sparse approximation,
as we also need to consider the non-negativity and the spa-
cial constraint. The algorithm should also be computation-
ally cheap, as the aim is to find a fast method for real-time
implementation. The most computationally expensive op-
eration in the spars approximation methods is the calcula-
tion of dictionary-vector multiplication. As the dictionary is
structured here, it can be implemented in O(P log(MN))
using a filtering technique. In the optimal first-order gradi-
ent technique for sparse representations, which are known
to be practically fast techniques for convex sparse approxi-
mation [2], the cost of each iteration is a constant time the
complexity of each dictionary-vector multiplications. As
the number of iterations for the convergence is generally
not known and it is often much larger than K with coher-
ent dictionaries, the overall algorithm is expensive for the
real-time implementation. In the following, we will intro-
duce two simple algorithms, which are actually modified
versions of the corresponding sparse approximation meth-
ods, which are computationally cheap. Some theoretical
guarantees for the touch location recovery using the follow-
ing proposed method, is presented in [19]. These results are
based upon bounding the error of recovering a set of touch
locations in the neighbourhood of actual touch locations.

4.1 Support Constrained Positive Hard Thresholding
(SCPHT)

This method is based on the hard-thresholding for sparse
approximation [7, 15]. We first calculate DTz to find θt.
We now start from the largest coefficient of θt, keep this
coefficient and set the R/2-neighbourhood coefficients to
zero. Note that SCPHT uses the values of coefficients and
not on their absolute magnitudes, to consider the positivity
of the sparse representation. R/2 has been chosen as the
thresholding parameter, to consider the fact that the selected
atoms can be away from the actual location of the closest
touches. We repeat this processK times and let the remain-
ing small coefficients be zero to derive θ. A pseudocode for
this algorithm is presented in Algorithm 1. HR/2 thresholds
all the coefficients in the R/2-neighbourhood of the index
sk, i.e. ∀i, ‖(α̂i, β̂i)− (α̂sk , β̂sk)‖2 ≤ R/2.
SCPHT includes one dictionary-vector multiplication, one
sorting, which is O(P log(P )). The overall computational
complexity is thereforeO(P (log(MN) + log(P ))), which
is slightly more expensive, in order of magnitude, than a
simple digital filtering.

4.2 Support Constrained Positive Matching Pursuit
(SCPMP)

Matching Pursuit (MP) [13] is a greedy sparse approxima-
tion algorithm, which iteratively chooses a new non-zero
components for θ, to reduce the approximation error. We
restrict the set of possible non-zero elements in the atom se-
lection step, i.e. to not have negative magnitude and not be
close to one of the selected atoms, and introduce the mod-
ified algorithm of Algorithm 2. As this algorithm impose

1: Input: K, D, z and R
2: Initialisation: k = 1, 0 ≤ λ� 1 and θ = 0,
3: θt ← DTz
4: while k ≤ K and θt 6= 0 do
5: sk ← argmaxs θt(s)
6: θ(sk)← θt(sk)
7: θt ← HR/2 (θt, sk)
8: k ← k + 1
9: end while.

Algorithm 1: Support Constrained Positive Hard Thresh-
olding

1: Input: K, D, z and R
2: Initialisation: k = 1, θ = 0 and m = 1P×1

3: r = z
4: θr ← DTr
5: while k ≤ K, m 6= 0 and maxs r(s) > 0 do
6: sk ← argmaxs∈supp(m) θr(s)
7: θ(sk)← θr(sk)
8: m← HR/2 (m, sk)
9: r← r− dskθ(sk)

10: θr ← θr −DTdskθ(sk)
11: k ← k + 1
12: end while.
Algorithm 2: Support Constrained Positive Matching Pur-
suit

some restrictions on the support, we call it here the Support
Constrained Positive Matching Pursuit. supp(m) indicates
the index set of non-zero elements of m, m thus acts as a
mask for the coefficient vector θr.
Although SCPMP is generally a computationally cheap
structured sparse approximation algorithm, it is still a
more computational demanding algorithm than SCPHT. In
each step of SCPMP, we need to calculate a dictionary-
vector multiplication, finding the maximum, updating r and
updating θr

2 respectively with the complexities of order
P log(MN), P , MN and P . Therefore, the total com-
putational complexity of SCPMP with K iterations would
be O (K (P log(MN) + 2P +MN)). The advantage of
using SCPMP, instead of SCPHT, is demonstrated in the
simulation section. SCPHT can only be competitive, when
the magnitude of Gaussian functions, i.e. ai’s are roughly
the same.

5 Simulations

In the first experiment, we show that SCPMP can actually
improve the resolution of location recovery. We chose a
11 by 13 sensing grid and a complete and a 36 times over-
complete dictionaries, which were generated by regularly
partitioning the touch sensor area. A five touches input sig-
nal was generated according to (1), where the location of
touches were selected randomly while complying the min-
imum distance constraint, i.e. R = 2∆, and ai’s were ran-

2This step is computationally simplified using the precom-
puted Gramian matrix.



Figure 3: Five finger touches signal and the recovered touch loca-
tions. Stars, circles and squares respectively indicate the original
locations, recovered by SCPMP using a complete and a 36 times
overcomplete dictionaries.

Figure 4: The average total reconstruction errors for different
overcompleteness of regular (over-)complete dictionaries, over
1000 random trials.

domly selected between 0.5 and 1. We have plotted the
original signal with some contour plots, the original loca-
tions of the touches by stars, the recovered locations using
the complete dictionary by circles and the recovered loca-
tions using the 36 times overcomplete dictionary by squares
in Figure 3. This figure shows that the proposed technique
has recovered the closest points on the grid when the dic-
tionary is complete and more accurate locations when the
dictionary is overcomplete. If we repeat this simulation for
different overcompleteness and measure the total `2 errors
of the location recovery for 1000 randomly generated tri-
als, we can quantify the success of sparse supper-resolution
technique, which is shown in Figure 4. This figure shows
the errors for three different closeness parameters R.
In the next experiment, we use SCPHT for the location re-
covery, using the setting of the previous experiment. We
have plotted the average total error over 1000 trials in Fig-
ure 5, where R = 2∆ and ai’s were 1 or randomly se-
lected between 0.5 and 1. When the magnitude of the touch
signals can change, the performance of SCPHT is poor for
overcomplete dictionaries, see the curve with circle indi-
cators in this figure. However, when the magnitudes are
roughly the same, here ai = 1,∀i, the error is reduced for
the overcomplete dictionaries, see the curve with diamond
indicators. It emphasises on the fact that for the magni-
tude sensitive touch sensors, we have to use a more compli-
cated algorithm like SCPMP, as SCPHT fails in the super-

Figure 5: The average error using SCPHT over 1000 trials for
fixed and variable touch magnitudes.

Figure 6: The location recovery error for the noisy and noisefree
sensing signals.

resolution sensing here. However, for the capacitive touch
sensors, the magnitude of each touch is due to the proxim-
ity of the finger, which makes a roughly constant magnitude
for each touch.

In the last experiment, we investigate the noise sensitivity of
the proposed super-resolution technique, using the SCPMP
algorithm. If we add a zero-mean white noise, with stan-
dard deviation of 0.1, to the generated signal of previous ex-
periments, when the magnitude of ai is randomly between
0.5 to 1, we get the recovery errors which are plotted in Fig-
ure 6. The noiseless recovery result has also been plotted
for the reference. This experiment demonstrates that the
proposed super-resolution technique is fairly robust to the
additive noise of sensors.

6 Summary

We formulated the super-resolution sparse touch sensing
and presented two practical algorithms to improve the sens-
ing resolution. The algorithms are the modified versions of
the well-known Hard-Thresholding and Matching Pursuit
sparse approximation algorithms. We showed that the touch
sensing error reduces by the proposed techniques in the syn-
thetic experiments. Although the resolution improvement
here is significant, we may be able to even increase the reso-
lution using a more efficient overcomplete dictionary, found
by dictionary learning. We left this for the future work.
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