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Analysis Framework : An Introduction

A low dimensional signal model.

A special type of the union of subspaces
signal model.

Has many applications in, for example,
denoising, compressed sensing and inverse
problems to improve the overall performance.

Analysis Model

The signal y follows the model, if there exists a (linear) analysis
operator Ω ∈ Rn×m, n ≥ m that sparsifies y,

z = Ωy.

‖z‖0 = n − p, where p > 0 is called the co-sparsity of y.
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Analysis Operator Learning (AOL) Formulation

A set of samples Y = [y1 . . . yi . . . yL] is given.

The goal is to find a suitable analysis operator Ω
such that ‖ΩY‖0 is small.

The objective is non-smooth ⇒ not suitable for
optimization with variational techniques.

A relaxation is to select the sum of absolute
values operator, i.e. ‖ · ‖1 =

∑
i j |{·}i j |.

Formulation

The learned operator can be found by minimizing the sparsity
promoting operator,

min
Ω
‖ΩY‖1 s. t. Ω ∈ C

where C is a constraint, to exclude the trivial solutions, e.g. Ω = 0.
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Insufficient Constraints

Row norm constraints

∀i , ‖ωi‖2 = c

Rank one Ω1 is found by
repeating the best
(almost) orthogonal
direction ω∗ to columns
of Y.

Row norm + full rank
constraints

A randomly perturbed Ω
from Ω1 , i.e. row
normalized Ω1 + N, has a
full rank and it is still not
suitable.

Tight frame constraints

It resolves the issue in a
complete setting. In the
overcomplete cases, it
includes zero-padded
orthobases.
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Proposed Constraint

Uniform Normalized Tight Frame (UNTF):

Definition: C = {Ω ∈ Rn×m : ΩTΩ = I & ∀i ‖ωi‖2 =
√

m
n }

Pros and Cons:

Zero-padded orthobases are not UNTF.

Efficient methods exist to project onto the TF and the UN
manifolds. However, there is no analytical way to find the projection
onto the UNTF!

There is no easy way to find the global optimum, using C as the
constraint.
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Projected Subgradient Algorithm for AOL

Motivation

Minimization of a convex objective subject to the intersection of
two manifolds ⇒ a variant of projected subgradient algorithm is a
good candidate.

Projected Subgradient Algorithm for AOL

1: initialization: k = 1, Kmax , Ω[0] = 0, Ω[1] = Ωin, γ, ε � 1
2: while ε ≤ ‖Ω[k] − Ω[k−1]‖F and k ≤ Kmax do
3: ΩG = ∂f (Ω[k])
4: Ω[k+1] = PUN

{
PTF

{
Ω[k] − γΩG

}}
5: k = k + 1
6: end while
7: output: Ωout = Ω[k−1].
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Exact Operator Recovery

A pseudo-random UNTF operator Ω0 ∈ R24×16 was used to generate
N = 768 training samples.

For each cosparsity p, a random normal vector was selected in the
orthogonal complement space of p randomly selected rows of Ω0.

The simulation was started with a different pseudo-random
admissible Ωin and iterated 50000 times.

The average recovery of the rows of Ω0, for different cosparsities and
100 trials, is shown as a function of the cosparsity of the signals.
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AOL for the Piecewise Constant Images

Finding an Ω for the image
patches of size 8× 8.

A 512× 512 Shepp-Logan
phantom image was used
as the training image.

N = 16384 image patches
was randomly chosen from
the training image.

A pseudo-random UNTF
operator Ω0 ∈ R128×64 was
used as the initial operator
and the algorithm iterated
100,000 times!
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AOL for the Piecewise Constant Images: the First 16 Learned Rows
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A Comparison with Another UNTF

Some rows have similarities
with the finite difference
operator rows → finite
difference operator is not a
UNTF.

An alternative is to use
(orthonormal) Haar wavelet as
the mother basis to generate a
union of orthobases.

The union of a Haar wavelet
and a circularly shifted version,
was selected for comparison. 0 1 2 3 4 5 6 7 8 9 10
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Learned Operator

2X Haar Operator

Do we get any better operator by initializing with the generated
Haar based operator? NO. It is indeed a local minimum for the
proposed AOL program.
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Conclusion and Future Work

Conclusion:

The proposed analysis operator learning technique showed promising
results in the exact operator recovery.

Although the proposed constraint may not be the most relevant
constraint, it works well with the piecewise constant images.

Although each iteration of the AOL algorithm is not
computationally expensive, it converges very slow.

Future Work:

I Alternative constraints.

I Better optimization techniques.

I Deriving an explicit formulation for the recovery of an operator.

I Noise aware analysis operator learning.
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Thanks for your attention.



Local Identifiability

Definition

Let an analysis operator Ω0 exist that the set of given training
samples Y are cosparse. It is called “locally identifiable”, if it is a
local optimum of the proposed optimization problem.

An admissible point Ω0 is a local minimum of ‖ΩY‖1, if any
perturbation of Ω0 in the tangent space of UNTF, increases the
objective.

We can then show the local optimality of Ω0 by showing ∆ = 0 is
the only solution of,

min
∆
‖(Ω0 + ∆)Y‖1 s. t. ∆TΩ0 + ΩT

0 ∆ = 0

∀i 〈ω0i , δi 〉 = 0.
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