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ABSTRACT

We consider the problem of learning a low-dimensional signal
model from a collection of training samples. The mainstream ap-
proach would be to learn an overcomplete dictionary to provide
good approximations of the training samples using sparse synthe-
sis coefficients. This famous sparse model has a less well known
counterpart, in analysis form, called the cosparse analysis model.
In this new model, signals are characterized by their parsimony in a
transformed domain using an overcomplete analysis operator. We
propose to learn an analysis operator from a training corpus using
a constrained optimization program based on L1 optimization. We
derive a practical learning algorithm, based on projected subgradi-
ents, and demonstrate its ability to robustly recover a ground truth
analysis operator, provided the training set is of sufficient size. A
local optimality condition is derived, providing preliminary theoret-
ical support for the well-posedness of the learning problem under
appropriate conditions.

1. INTRODUCTION

Sparse signal models, associated to redundant signal dictionaries,
are widely used in all areas of signal processing. Traditionally, spar-
sity is considered using a synthesis model, where high-dimensional
and complex data vectors y ∈ R

m are approximated using linear
combinations of few elements or atoms from an overcomplete col-
lection called dictionary:

y ≈ ∑xkφk = Φx, (1)

where Φ ∈ R
m×q, m ≤ q, is the dictionary and its columns φk are

the atoms. A plethora of algorithms have been derived that provide
sparse representations of a given input in this synthesis approach,
or more generally solve linear inverse problems of the type y = Φx
where x is sparse. One of the most celebrated approaches is based
on ℓ1 minimization

min
x

‖x‖1 s. t. y = Φx. (2)

1.1 Dictionary Learning

Many classes of natural data (audio, images) are associated to
known dictionaries (Gabor, wavelets, ...) which provide somewhat
accurate approximations of any signal in the class using sparse ex-
pansions. When no specific dictionary is available, techniques have
been developed to learn a dictionary from a collection of training
samples, {yi}i∈I [1, 11, 12, 14, 15, 19, 20]. There has been much
practical success in this direction, and some success guarantees
have been achieved [6, 8] for the learning problem formulated in
the form of the following optimization problem,
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min
X,Φ∈D

‖X‖1 s. t. Y = ΦX, (3)

where Y ∈ R
m×l = [yi]i∈I

, X ∈ R
q×l and D are respectively the

training signal matrix, the coefficient matrix and an admissible set
of dictionaries.

1.2 Cosparsity and Cosparse Analysis Model

However, the famous sparse synthesis model has a less well-known
counterpart, in analysis form, which has received much less atten-
tion in terms of algorithms, and virtually no attention at all in terms
of model learning. The main contributions of the current paper are
to explore this new terrain.
In this new model, called the cosparse analysis model [13], sig-

nals are characterized by their parsimony in a transformed domain,
using a given overcomplete analysis operator Ω ∈ R

n×m:

z = Ωy (4)

where z has a minimal representation and Ω is the analysis opera-
tor. In this setting, the concept of sparsity in (4) is slightly different
to the standard definition of sparsity in (1), as the number of zero
elements in z, p= n−‖z‖0 has a more important role in analyzing
the model (4). It has thus been named cosparsity [3, 13], to prevent
any possible confusions. In the context of linear inverse problems, it
has been shown that the cosparse analysis model can lead to unique-
ness guarantees that mimic that of the sparse model [3,13], and new
cosparse recovery algorithms have been designed [13] .

1.3 Analysis Operator Learning

When a set of samplesY = [yi]i∈I , is given, a question is how can
we choose a suitable Ω, which provides the highest cosparsity for
Y? This is the central problem considered in this paper. Specifi-
cally, our main contributions are

• a constrained optimization program for Analysis Operator
Learning (AOL) based on ℓ1 minimization, in section 2;

• a practical learning algorithm, based on projected subgradient,
in section 3;

• empirical results suggesting that the approach works reasonably
well, even when the algorithm is initialized with a random anal-
ysis operator, provided the size of the training set is sufficient,
in section 4;

• a local optimality condition for testing the optimality of an anal-
ysis operator with respect to the proposed program, in sections 5
and 6.

2. CONSTRAINED ANALYSIS OPERATOR LEARNING

The standard approach for many similar model adaptation prob-
lems, is to define a relevant optimization problem such that its op-
timal solution promotes maximal sparsity of Z := ΩY. A convex
sparsity promoting penalty f (Ω) is the sum of absolute values of
Z, i.e. f (Ω) = ‖ΩY‖1 . Unconstrained minimization of f (Ω) has



some trivial solutions. A solution for such a minimization problem
isΩ = 0! A suggestion to exclude such trivial solutions is to restrict
the solution set to an admissible set C . We here start by investigat-
ing the problem of using a closed admissible set. AOL can now be
formulated as,

min
Ω

‖ΩY‖1 s. t. Ω ∈ C (5)

We here initially propose some constraints for the problem (5)
and explain why some of them can not individually exclude unin-
teresting solutions. We finally propose a combined constraint C ,
which is the Uniform Normalized Tight Frame (UNTF). The pro-
posed constraint is smooth and differentiable on its boundary.

2.1 Row norm constraints are insufficient

The first constraint is on the norms of rows of Ω, i.e. ‖ωi‖ = c for

the ith row. By applying this row norm constraint on Ω, we find the
bestω∗ ∈R

m, i.e. minimizer of ‖ωTY‖1, which repeats to generate
Ω, i.e. Ω∗

1 := [ωi = ω]T
i∈[1,m], and thus Rank{Ω∗

1} = 1. Such a

solution is not interesting to us as we are looking for a full rank
overcomplete operator. If we want to use this constraint individually
and still get a reasonable solution, we need to change the objective
of (5) to consider the interrelation of the rows of Ω [17], which is
out of the scope of this paper.

2.2 Row norm + full rank constraints are insufficient

A full rank fixed row norm constraint CF on Ω provides solutions
with very small condition numbers. To illustrate this, denote PCF

the orthogonal projection onto CF , and consider A and ε respec-
tively a random Gaussian matrix and a very small constant. The
projection PCF

{εA+ Ω∗
1} has a low objective value in (5). We

thus need a geometrical constraint on Ω to not allow ωi’s get arbi-
trary close to each other, i.e.

∣

∣

〈

ωi,ω j
〉
∣

∣≈ ‖ωi‖.‖ω j‖.

2.3 Tight frame constraints are insufficient

In a complete setting m = n, an orthonormality constraint can re-
solve the ill-conditioning of the problem. The rows of Ω are ge-
ometrically as separated as possible. Letting n > m, the orthonor-
mality constraint is not further applicable. An alternative is the or-

thonormality constraint in the ambient space, ∀i 6= j, ω i⊥ω j and
‖ω i‖2 = ‖ω j‖2 = 1, where ω i andω j ∈ R

n are respectively the ith

and jth columns of Ω. The admissible set of this constraint is the
set of tight frames in R

n×m, i.e. ΩTΩ = I, where I is the identity

operator in R
m. The admissible set C = {Ω ∈ R

n×m :ΩTΩ = I} is
smooth and differentiable on its boundary.
Although the tight frame constraint could have seemed appro-

priate to avoid “trivial” solutions to (5), preliminary empirical and
theoretical investigations indicate that when the training set is full
rank, the analysis operator minimizing (5) using this constraint is
always an orthonormal basis completed by zero columns [4].

2.4 Proposed constraint: Uniform Normalized Tight Frame

This motivates us to apply an extra constraint. Here, we choose to
combine the unit row norm and the tight frame constraints, yielding
the UNTF constraint set. UNTF frames have many interesting prop-
erties, but to the authors’ knowledge, there is no analytical method
to find the projection of a point onto this set. Many attempts have
been done to find such an (approximate) projection, see for exam-
ple [18] for an alternating projection based method.

2.5 Algorithms ?

Such a constraint C is not convex, hence the optimization problem
(5) is non-convex. In section 3 we propose a projected subgradient
solvers, which is likely to find a local minimum. When the ground
truth analysis operator Ω0 used to generate the training corpusY is
a local minimum of the optimization problem, we expect to iden-
tify it using the projected subgradient algorithm, provided we start

Algorithm 1 Projected Subgradient Method for Analysis Operator
Learning

1: initialization: k = 1, Kmax, Ω
[0] = 0, Ω[1] = Ωin, γ , ε ≪ 1

2: while ε ≤ ‖Ω[k] −Ω[k−1]‖F and k ≤ Kmax do
3: ΩG = ∂ f (Ω[k])

4: Ω[k+1] = PUN

{

PTF

{

Ω[k] − γΩG

}}

5: k = k+1
6: end while
7: output: Ωout = Ω[k−1]

from a point close enough to Ω0. However, this can only happen
if there are not “too many“ spurious local minima. The experimen-
tal results, in section 4 will show that this seems to be the case, and
the underlying analysis operator is reliably recovered even when the
algorithm is started far from it, when the size of training set I is
large enough.

3. PROJECTED SUBGRADIENT ALGORITHM FOR AOL

Subgradient methods have often been used to minimize convex ob-
jectives, when the solution is sought only with a few significant
figures. These methods are generally slow to find exact solutions,
as they converge linearly. In the AOL, we also need to solve (5) to
find a solution with a reasonable precision. As the problem is con-
strained, we use the projected subgradient method. The subgradient
of the objective is simply ∂ f (Ω) = Ysgn(ΩTY)T , where sgn is the
extended sign function defined as follows,

{sgn(A)}i j =sgn(Ai j)

sgn(a) =







1 a > 0,

[−1,1] a = 0,

−1 a < 0.

(6)

In the projected subgradient methods, we have to choose a value
in the set of subgradients. We randomly choose a value in [−1, 1],
when the corresponding element is zero.
Projection of an operator, with non-zero rows, onto the space

of fixed row norm frames is easy and can be done by normalizing
each row to have c norm, we usePUN to denote this projection. If
a row is zero, any normalized vector has the same distance to the
zero vector, and we thus choose a normalized random vector. The
projection can be found by,

PUN{Ω} = [PUN{ωi}]i, (7)

PUN{ω} :=
{

ω
‖ω‖2 ‖ω‖2 6= 0
ν otherwise,

where ν is a random vector on the unit sphere.
Projection of a full rank matrix onto the tight frame manifold

is also easy and can be done using a singular value decomposition
of the linear operator [18]. Let A ∈ R

n×m be the given point and
A = UΣVT be a singular value decomposition of A and In×m be a
diagonal matrix with identity on the main diagonal. The projection
ofA can be found using,

PTF (A) = UIn×mV
T . (8)

As mentioned in section 1, a point on the intersection of the
uniformly normalized set and the set of tight-frames can often be
found by alternatingly projecting onto these sets. Note that, there
is no guarantee for convergence to an UNTF using this method, but
this technique practically works very well [18]. As the projected
subgradient continuously changes the current point, which needs to
be projected onto the UNTF’s, we only use a single pair of projec-
tions at each iteration of the algorithm. In practice we found that the
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Figure 1: The average percentage of operator recovery for different
λ ’s, where λ controls how far is the starting point Ωin form Ω0. The
x-axis presents the cosparsity of the synthetic data.
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Figure 2: The average percentage of operator recovery with the ran-
dom starting point. The x-axis presents the cosparsity of the signals.

solutions converge to UNTF’s. A pseudocode of this algorithm is
presented in Algorithm 1. As the projection onto the admissible set
is not exact, although we have not observed instability by choosing
a small gradient step size, convergence of this algorithm needs to be
investigated in the future work.

4. EMPIRICAL EVIDENCE

In this section we present some simulation results to empirically
show the local optimality of synthetic generative operators. We also
empirically demonstrate the convergence of the proposed algorithm
and the global recovery of the operator, when the size of the training
set is large.

A random operator Ω0− ∈ R
24×16 was generated using i.i.d. zero

mean, unit variance normal random variables1. The generative anal-
ysis operator Ω0 is made by alternatingly projecting Ω0− onto the
sets of UN’s and TF’s. A set of training samples was generated,
with different cosparsities, by randomly selecting a normal vec-
tor in the orthogonal complement space of a randomly selected p
rows of Ω0. Such a vector yi has (at least) p zero components in
Ω0yi, and it thus is p cosparse. To initialize the proposed algo-
rithm, we used a linear model to generate the initial Ω by combin-
ing the generative operator Ω0 and a normalized random matrixN,
i.e. Ωin = Ω0+λ N, and then alternatingly projecting ontoUN and
TF . It is clear that when λ is zero, we actually initialize Ω with
the generative model Ω0 and when λ → ∞, the initial Ωin will be
random.

1Ω0− is not necessarily a UNTF and needs to be projected onto the set of
UNTF’s.
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Figure 3: The average percentage of operator recovery with differ-
ent training set population size l. The x-axis presents the cosparsity
of the signals.

In the first experiment, we chose a set of size l = 768 of such
training corpus. The projected subgradient method was iterated
50000 times. To check the local optimality of the operator and the
size of basin of attraction, we chose λ = 0, 1, and10. The average
percentage of operator (rows) recovery, i.e. the maximum ℓ2 dis-
tance of any recovered row and the closest row of the generative

operator, is not more than
√

.001, for different cosparsity and 100
trials, are plotted in Figure 1. We practically observe that the opera-
tor is the local optimum even when the cosparsity of the signal is as
low as 3. We also see that the average recovery reduces by starting
from a point far from the the actual generative operator. When λ
becomes large, we do not further degrade the average recovery as
the initial point is close to random, projected onto the admissible
set. We also repeated the simulations with a (pseudo-) random ad-
missible Ωin. The result is shown in Figure 2. The average recovery
is very similar to the previous experiment, when λ is large, which
confirms our expectation.

We now investigate the role of l on the average operator re-
covery by some simulations. We kept using previous experiment
settings and repeated the simulations for two new training sets, with
populations of l = 384 and 1536, which are 1/2 and 2 times of
the population in the previous experiments. We show the average
operator recovery for λ = 0, 1, 10 in Figure 3. The simulation re-
sults show not only that Ω0 can be locally identified with even less
cosparse signals, smaller p, but the basin of attraction is also ex-
tended and now the generative operator can be recovered by starting
from a distant initial point, even using 2 cosparse signals.

The promising results in robust recovery of the generating op-
erator encourage us to investigate the proposed framework by char-
acterizing the local optima of (5) in a general setting. This helps us
to check, if a given Ω0 is a local minimum, and thus locally iden-
tifiable using a gradient based solver. We briefly introduce such
a qualification for a local optimality in the next section. It is de-
rived using the convexity of the objective and the smoothness of the
boundary of C . The local optimality, for the UNTF admissible set,
is also investigated as a special case and a straightforward qualifi-
cation is derived. The result has a flavor similar to those obtained
in the context of dictionary learning for the synthesis model [8], as
well as in hybrid synthesis/analysis framework [10].



5. LOCAL OPTIMALITY OF AN OPERATOR

The set of matrices in R
n×m equipped with the Hilbert-Schmidt

inner-product, defined by 〈A,B〉 := tr{ATB}, is an inner-product
space. The ℓ1 function can now be reformulated as ‖A‖1 =
〈A,sgn(A)〉, where sgn(·) is the element-wise sign operator.
The set of zeros of Zn×l = ΩY, has an important role in varia-

tional analysis of the ℓ1 objective. LetΛ be the index set of non-zero
elements of Z and Λ be Λ’s complement. Note that the ith column
of Z, zi, is found by Ωyi. yi is cosparse, when zi has some zero
elements. The cosparsity of the matrixY can similarly be found by

|Λ|. We define XΛ as the matrix which has the components of X
on the support Λ, and the rest is zero.

Theorem 1 (Optimality Condition) Let C be a compact set and
TC (Ω) be the tangent cone at a boundary point Ω. If Z = ΩY,
the necessary and sufficient condition for a boundary point Ω being
a local optimum of (5) is to satisfy the following inequality for any
non-zero Θ ∈ TC (Ω),

|〈ΘY,sgn(Z)〉| <
∥

∥(ΘY)Λ

∥

∥

1
, (9)

where Λ is the index set of zeros of Z.

A complete proof of this theorem will be shown in [4]. We here
present a sketch of the proof. The objective of (5) is convex and
C is smooth on boundary. Using the variational analysis, a bound-
ary point Ω with this setting is a local optimum, if the directional
derivative of the objective in Ω is positive for any (non-zero) direc-
tion in the tangent space of C at Ω, see [16, Theorem 13.24 and
Example 13.25].
This theorem can be seen as an extension of Theorem 1 in [10],

where it is derived in a vector space, under unit norm constraint.
The new theorem is more general, and we only need to check (9)
for any non-zero vectors in TC (Ω). Unfortunately this is not an
easy task in general. In the next section we reformulate (5), with a
UNTF admissible set. The tangent space of C can be analytically
derived. We thus give an explicit qualification for the optimality.

6. UNIFORM NORMALIZED TIGHT FRAME LEARNING

The set of UNTF’s in R
n×m ,m< n, was defined in the introduction

as C = {∀Ω ∈ R
n×m : ΩTΩ = I, ∀i ‖ωi‖2 = c}, where c =

√

m
n

and ωi is the i
th row of Ω. Note that C is now a manifold and

any admissible point is thus on the boundary of C . For a given
training Ym×l , l ≫ m, the operator learning problem (5) can now
be reformulated as,

min
Ω

‖ΩY‖1 s. t. ΩTΩ = I

∀i ‖ωi‖2 = c.
(10)

To check the optimality of an admissible point Ω0, we can slightly
deviate Ω0 in a direction ∆ in the tangent space of C at Ω0, i.e. Ω =
Ω0+ ∆. The tangent space of C is found by letting the directional

derivative2 of h(Ω) = ΩTΩ−I and h(ωi) = ‖ωi‖−c, for each i, be
zero,

∂h(Ω)(∆) = ∆TΩ+ΩT∆ = 0, (11)

and
∂h(ωi)(δi) = 2ωiδ

T

i = 0, (12)

which is simply 〈ωi,δi〉 = 0. We can now rewrite (10) using the
new variable ∆,

min
∆

‖(Ω0+∆)Y‖1 s. t. ∆TΩ0+ΩT

0
∆ = 0

∀i 〈ω0i,δi〉 = 0,
(13)

where δ i is the ith row of ∆. (13) is a convex problem with linear
constraints. If the new problem has a single solution ∆ = 0, Ω0

2For the definition of directional derivative, see for example [2].

would then be a local minimum for (10). To find a qualification that
guarantees 0 to be the only solution of (13), we reparametrize the
problem. Let Z0 := Ω0Y and ∆Z := Z−Z0 = ∆Y. As Y is full
rank, we can define Θ := YT (YYT )−1 and find ∆, respectively δi,
using,

∆ = ∆ZΘ , δ i = δ i
Z
Θ.

To reformulate (13) and use a higher dimension problem based on
∆Z , we should consider the fact that each row of Z, z

i, can only live
in the subspace spanned by rows ofY. This means that zi does not
have any component in the null space of Y. We can now introduce
an extra constraint to consider this fact by ∆Z (I−ΘY) = 0. If we
define P := I−ΘY, the problem can be reformulated as,

min
∆Z

‖Z0+∆Z‖1 s. t. ΘT∆T
Z
Z0Θ+ΘTZT

0
∆ZΘ = 0

∀i 〈Zi0Θ,δ iZΘ〉 = 0

∆ZP = 0.

(14)

Let a vector to matrix operator ”vect{·}“ be defined such that,

{vect{Z}}
k
= Zi j, i= k mod l

1≤ k ≤ nl j = ⌊k−1
l

⌋+1,

and the corresponding inverse operator be ”mat{·}“. If η :=
vect{∆Z} and z0 := vect{Z0}, the constraint of (14) is linear and
can be presented as Φη = 0. Appendix A explains how to derive
Φ. The last reformulation is to rewrite (14) in a vector form,

min
η

‖z0+η‖1 s. t. Φη = 0. (15)

Note that the solution of this problem can be mapped to the matrix
form using ”mat“ operator. (15) is the formulation which has been
used to show the optimality of a vector z0 for the problem (2), i.e.
an admissible z0 is the optimal solution of (2) iff η = 0 is the only
solution of (15). Such a qualification has been derived as follows:

‖ηλ ‖1 <
∥

∥η
λ

∥

∥

1
, ∀η 6= 0 ∈ NΦ, (16)

is the necessary and sufficient condition for the optimality of z0,
where λ := sup{z0} andNΦ is the null-space of Φ [5, 7].

Remark 1 The extra constraint ∆ZP = 0 in (14) can be interpreted
as the orthogonality of each row of ∆Z to the null-space of Y.
Therefore the size of this constraint is actually n× (l−m), which
is smaller than n× l, the size that is related to a full rank P.

Remark 2 The derived local optimality condition is a deterministic
qualification. How to check this qualification, is another important
question which we do not answer here in this paper. The authors
admit that such a test is not easy, but it might be possible to deliver a
probabilistic statement using the new technique recently introduced
in the matrix completion context [9].

Remark 3 For any 1 < p < m , we can generate an (at least) p
cosparse signal with a given cosparsity pattern. It means that,
we can choose a signal in the orthogonal complement of the space
spanned by the rows ofΩ corresponding to the p cosparsity pattern.

Note that if (16) is valid for any |λ | = p, it is valid for any larger
index sets including λ . This helps us not to worry about checking
(16) for the situations that by choosing a vector in the orthogonal
complement space of the selected p columns of Ω, other elements
also vanish.



7. CONCLUSIONS

This paper presented a new framework for low-dimensional signal
model adaptation. The linear model, which is here called the anal-
ysis operator, can be used to sparsify a classes of signals. The new
framework helps to apply various constraints to the operators.
A simple, but efficient, algorithm based on the projected sub-

gradient technique, was also presented to recover such operators.
The algorithm relies on the projection onto the constraint set. We
used the algorithm to first practically show the local optimality of
the operator for the proposed optimization problem, which it shows
identifiability of the operator using gradient based methods. We
then tested the algorithm to recover the synthetic random operators
in another experiment, when the algorithm is fed with a point in
the neighborhood of the true analysis operator. We demonstrated
that the operator is usually recovered when the training corpus is
large enough. Even when we do not know a neighborhood of the
generative operator, we practically showed that there is still a good
chance to recover the operator, when the training signals are enough
cosparse.
In the second half of the paper, the local identifiability of such

an operator is investigated and a necessary and sufficient qualifica-
tion was presented. An example of such constraints, i.e. UNTF,
which was empirically shown to be a reasonable constraint for this
problem, was investigated in more detail and a more sensible qual-
ification for the identifiability of operators, was derived. The qual-
ification is deterministic but difficult to check. Checking such a
qualification is left for future work.

APPENDIX

A. DERIVING A LINEAR REPRESENTATION OF THE
CONSTRAINTS

Let the subscript · i j be the element located in the ith row and jth
column of the operand. To show linearity of the constraint, we only
need to represent each constraint as a weighted sum of δZ i j. Al-
though the correct notation is based on the vector subindexing of
vector η , we keep using the matrix form of subindexing as it is eas-
ier to understand for the readers. A mapping between two types of
subindexing is easy, as η = vect{∆Z}. (14) has three constraints,
where the last two are clearly linear, and they can be represented as,

∑
k

δZ i k Pk j = 0, ∀i ∈ [1,n], j ∈ [1, l]

∑
k

δZ i k Q k i = 0, ∀i ∈ [1,n],
(17)

where Q := ΘΘTZT
0
. Let A := Z0Θ. The first constraint can now

be reformulated as, ΘT∆TZA+AT∆ZΘ = 0. To derive this equation
in a similar form to (17), we reformulate ∆ZΘ, then left-multiply the
result withAT .

{ΘT∆TZ}i j =
1≤q≤l

∑
q

δZ j qΘqi (18)

{(ΘT∆TZ )A}i j =
1≤k≤n

∑
k

(

1≤q≤l

∑
q

δZkqΘqi

)

Ak j

=
1≤k≤n

∑
k

1≤q≤l

∑
q

ΘqiAk j δZkq

(19)

We now reformulate the first constraint as,

1≤k≤n

∑
k

1≤q≤l

∑
q

(

ΘqiAk j+ Θq jAk i

)

δZkq = 0 , ∀i, j ∈ [1,m] (20)

We can generate Φ(n l+m2+n)×n l using the weight of (17) and (20), cor-
responding to the vector η , and make the linear presentation as
Φη = 0.
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