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Abstract—One of the important classes of sparse signals is
the non-negative signals. Many algorithms have already been
proposed to recover such non-negative representations, where
greedy and convex relaxed algorithms are among the most
popular methods. The greedy techniques have been modified
to incorporate the non-negativity of the representations. One
such modification has been proposed for Orthogonal Matching
Pursuit (OMP), which first chooses positive coefficients and uses
a non-negative optimisation technique as a replacement for the
orthogonal projection onto the selected support. Beside the extra
computational costs of the optimisation program, this does not
benefit from the fast implementation techniques of OMP. These
fast implementations are based on the matrix factorisations. We
here first investigate the problem of positive representation, using
pursuit algorithms. We will then describe a new implementation,
which can fully incorporate the positivity constraint of the
coefficients, throughout the selection stage of the algorithm. As
a result, we present a novel fast implementation of the Non-
Negative OMP, which is based on the QR decomposition and an
iterative coefficients update. We will empirically show that such a
modification can easily accelerate the implementation by a factor
of ten in a reasonable size problem.

Index Terms—Matching Pursuit, Orthogonal Matching Pur-
suit, Non-negative Sparse Approximations, QR Matrix Factori-
sation, Non-negative Least Square and Spectral Decomposition

I. INTRODUCTION

If the signal of interest is y € R and a dictionary of
elementary functions ® € RMV are given, the linear sparse
approximation can be formulated as finding the sparsest x €
RN, M < N, ie. having the minimum number of non-zero
elements, as follows,

y ~ Px. (1)

The greedy sparse approximation algorithms are generally
computationally low cost algorithms, suitable for real-time
and large scale sparse approximations. One simple greedy
algorithm is called Matching Pursuit (MP) [1], which gradually
builds the sparse representation of a signal by iteratively
adding the most correlated element of the dictionary, which is
called an atom, to the set of selected elements. A disadvantage
of MP is that the representation found by the algorithm is
not the best representation using selected atoms. It may also
reselect already selected atoms in the later iterations, which
slows down the convergence of the algorithm. OMP algorithm
[2], [3] is proposed to compensate these issues, with some
extra computation cost, which is mainly due to the orthogonal
projection of the signal y onto the selected support s, which
can be found by,

X, 1= argmin, |y — ®,X,][2, 2)
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where ®, and x, are respectively the sub-dictionary and the
coefficient vector restricted to the support s. As the residual
signal, after pruning out the contribution of current atoms, is
orthogonal to the selected atoms, these atoms would not be
selected in the future iterations.

There are many applications for which not only are the
coefficient vectors sparse, but they are also non-negative.
Spectral and multi-spectral unmixing [4], [5] and microarray
analysis [6] are only few examples of such applications.
Raman spectral deconvolution [7] and multi-touch sensing [8]
have been our initial motivation for the current work.

Some modifications have been proposed for the MP and
OMP algorithms to incorporate the non-negativity of the
coefficients [9]. The only necessary modification for MP is to
choose the most “positively” correlated atom, at each iteration
of the algorithm. This means that we only select the atoms with
the positive coefficients. In OMP, we have a projection step at
each iteration, which may find some negative coefficients. A
sub-optimal approach, which guarantees that the coefficients
are non-negative, is to use a non-negative least square (NNLS)
program to refine the selected coefficients at each iteration [9],
as follows,

argmin, >y — ®sxs2,

where > operator is the component-wise greater or equal
operator. A pseudo-code of Canonical Non-Negative OMP
(CNNOMP) is presented in Algorithm 1. Let ry =y — ®xy,
be the kth signal residual. In this algorithm, the sub-optimality
of such approach is due to the fact that the selected positive
coefficient at an iteration, may force already selected coeffi-
cients to become zero to still remain in the admissible set,
which reduce the efficiency of the algorithm. In other words,
this is caused by separating the selection and the NNLS as two
separate tasks. We show here that there is an alternative which
combines these two steps. As a result of such combination, we
can implement the algorithm in an efficient approach, which
has similarities with the canonical fast OMP implementations,
i.e. OMP with QR factorisation [10].

To introduce our algorithm, we first need to briefly explain
the fast factorization based OMP, which can be found in
section II. In section III, we explain how the non-negativity
constraint of the coefficients stops us of using the canonical
OMP and how we can modify the algorithm to not only
have a more intuitive atom selection step, but have a lower
computational complexity. We then show that the proposed
method has a much faster implementation in the simulation
part of section IV.



Algorithm 1 Canonical Non-Negative Orthogonal Matching Algorithm 2 Fast Non-Negative Orthogonal Matching Pursuit

Pursuit
1: initialisation: s =0, k=0, x=0and ro =y
2: while £ < K & max(®Try) > 0 do
32 (¢, 0) «— max(®Try)

4: s«—sUe

5: X, argming. ||y — ®s0|2
6: 41—y — Psxs

7: k—k+1

8: end while

9: X|s — Xs

II. FAST ORTHOGONAL MATCHING PURSUIT (FOMP)

In the standard implementation of OMP, we solve (2) at each
iteration. It can be solved by calculating the Moore-Penrose
pseudo-inverse of ®,, i.e. <I>T9 and X, = ‘I>iy. At iteration k&,
|s| = k and calculation of ® needs a matrix inversion with the
size k x k. When k increases, it computationally becomes very
expensive, i.e. O(k3). To combat such a computational bur-
den, incorporation of a matrix decomposition of the selected
sub-dictionary has been proposed, where QR factorisation is
among the most effective techniques. Let ®;, = ¥R be
the QR factorisation of selected k atoms of dictionary @,
where Wy is column orthonormal and Ry is upper-triangle
with positive diagonal elements on its main diagonal. With
some abuse of notation, we assume that in iteration k, the
columns of ®,, are sorted based on the iteration number and
@;, for 1 <3 < k, is the ith selected atom. As the column
span of ®; and W, are equivalent, we can simply solve,
Zs := argmin, ||y — W,z||2, instead of solving (2), and
find the solution by X, = Rk_,lis. As W, is orthonormal,
Zs = \IlZy, which can be implemented quickly. The algorithm
would not be fast, if the calculation of ¥, R and R~! could
not be done efficiently. There has been some fast realisations
of W, and Ry based on its iterative updates. To derive an
update formula for ¥, we recall the Graham-Schmidt (GS)
orthogonalisation procedure. As the first k terms of ®;,; has
a QR factorisation ¥Ry, we only need to continue the GS
procedure to find the last column of Wy ;. In this setting, we
have,

W1 = [Pk Yyl

where ¥y 1 = qri1/[[ Ak 2 and qryr = -8 T )y .
v k\Ilg operator projects the operand to the span of ¥ and
(I — W, ®}) finds the orthogonal element to the span of Wy,
We normalise such an orthogonal element to find ¥y ;. A
similar approach can be used to calculate Ry using Ry as

follows:
R, v }

Ryy1 :{ 0 o 3)

where v = [ ¢, 1 and 1 = ||qj41]|2- If we calculate R}
in the same way, we have the following update formula,

-1
_ R;! -l
RkL:l . I ] &)
n

The OMP algorithm with this implementation is faster than
standard pseudo-inverse implementation, for medium to large

1: initialisation: s =290 =0, k=0andrp =y
2: while k < K & max(®Try) > 0 do

3: (¢,t) « sort (@Try)

4: p<—1

50 pf—1

6: 290

7 while ~ Terminate & p < N do

8: 2% from (5)

9: Z ¢LT(p)rk Y = a/llall2, a= T - ‘I’k‘I’z)@(p)
10: Update based on Table I

11:  end while

122 s+« sUt(p)

13:  Update ¥ and R™*

14 Zpy1 — [2Zk; 2k41]

15: rpy1 < g — Zk+1¢k+1
16: k—k+1

17: end while

18: output: x|; «+ R 'zx

If Then
0<z<2t 2> 2° Zk+1 < %, Terminate
0<z<2t 2<2° 241 < 2%, p < p°, Terminate
2> 2> 20 p—p+1
26> 2> 2t 211 < 2°,p «— p¢, Terminate
2z > 2t > 2¢ 26— 28 p¢ —p, pe—p+1
z2<0 Terminate

TABLE I
DECISION RULES TO GUARANTEE POSITIVITY OF THE COEFFICIENTS.

k’s. After a close look at this implementation, we realise that
we do not need to keep track of x;’s in the intermediate
iterations! We only need to calculate z; at each iteration and
find x after the last iteration K, i.e. x = R;{lz K, Where z g
is z at the K'th iteration. It is also worth mentioning that we
also do not keep track of Ry, only updating ®;, and R,;l are
necessary.

When we choose positively correlated atoms, then finding
zy, we may get negative elements in the corresponding xj.
This fact does not allow us to directly use the FOMP technique
in a non-negative setting.

III. FAST NON-NEGATIVE ORTHOGONAL MATCHING
PURsUIT (FNNOMP)

Canonical NNOMP chooses the atom which maximises
@Trk in the kth iteration. In the first iteration, we do not
need any orthogonalisation and we have ¢; = 1; and
R = [1]. In the kth iteration, let the best approximation
of y, with the non-negative coefficients and using ®j, be
Zle xi; = Zf:l z;1p;. In the k + 1 iteration, we have,

k+1

k
Z 2, = Z 2i; + Zk+11/’k+1

=1 i=1

k
= Z%‘q—”i + Ze1 P41
i=1

As ., lives in the span of the non-redundant set
k+1 .
{¢j}je[17k+1], Y = ijl 7vj ¢, for some unique ;. We



then have,
k41 k k+1

Z Zi; = Z Tip; + Z 2175 P,
=1 =1 =1

k
= (@i + 26117 B; + 21 Vet 1Ppr
i=1
AS zr+17k+1 1s always positive, we only need to assure that
Zi + 2417 = 0 or
Tq
Vi

To assure that x;’s are all non-negative, z;’s should comply
with the condition of (5). We then choose the atom that the
corresponding zx4 1, or its shrunk by upper-bound of (5), i.e.
2, if it is larger than the upper-bound, has the largest value.
We therefore need to track the record of the best possible
solution, if the most positively correlated atom has a zj, that
does not comply with (5). If we call such a possible solution
z¢, (¢, 1) = sort ) (@”'r),), where sort) is the sorting operator
in a descent order, and z is the current candidate, starting with
z =((p), p =1, in an internal loop in the kth iteration, we
make the decision based on the rules of Table I.

After the termination of the inner-loop, we add ¢(p) to the
support s and update ¥, and R,;l. The overall steps of the
algorithm are presented in Algorithm 2. The algorithm consists
of two loops. The external loop terminates in a finite number of
iterations as K is finite. We only need to check the termination
of the inner-loop which makes the fast NNOMP different from
canonical NNOMP.

: &)

21 < 2t := min
i,7:<0

Lemma 1. The inner loop of Algorithm 2 converges in a finite
number of iterations.

Proof: The updating conditions of Table I have a “Ter-
minate” as an output or it increases p. As the dictionary
has a finite dimension N, the inner loop terminates when a
“Terminate” signal occurs or p = N. ]

While there might be worst cases for which the inner-loop
has to check all elements before termination, our observation
is that this loop terminates after only a few iterations.

For a fast implementation, we have to efficiently calculate .
By a careful investigation, we realise that it can be calculated
using R, !, which is already kept in memory. In this setting,
we can easily check that - is the last column of R;il, if
b1 18 the selected atom, i.e.,

-1
y =ty ©)
B
where v and p are the same as what were defined after (3).
It is worth mentioning that we do not update R,;l as we are
not sure at this stage that it is the most appropriate atom.

Based on (5), we only need to check this condition if some
v;’s are negative. A question may be, is this really happening?
The answer to this question is important, as otherwise, the
proposed algorithm would be the same as FOMP. We have
demonstrated a simple case to show that this case actually
happens, in Figure 1. In this figure, we assume that ¢, is
already selected as the first atom and the next selection is

¢1 =11

Fig. 1. A simple example in which gamma has negative elements for 2 .

@,. In this case, it is easy to check that ¢, = —\/§¢1 +
2¢,. This simple example justifies the use of FNNOMP, which
guarantees the positivity of the coefficients, at each iteration
of algorithm.

A. Computational Complexity

Having a structured dictionary may help us having a fast
dictionary-coefficient multiplication. However, the analysis
here is based on a dictionary without such a fast multipli-
cation, as it applies to many applications with non-negative
sparsity models. An extension to the fast dictionary is also
possible, if we accurately know the complexity of dictionary
multiplication.

The new implementation has a significantly different differ-
ent computational complexity to CNNOMP. The CNNOMP
of [9] has an internal non-negative least square optimisation
step, which has an asymptotic computational complexity of
O(LMK?), where k is the iteration number and L is the
number of internal iterations [11]. L is normally in the order
of k. This optimisation step repeats at each iteration, which
makes the total cost of O(LMK?3).

In the fast NNOMP, the inner-loop has some comparison
operations from Table I, which have negligible computational
cost. The other steps are the calculation of 2’ and z, which
respectively cost O(M (k+1)+ (k+1)2+1) and O(2M (k +
1) + 1). This inner-loop repeats a few times, i.e. P. Our
observation is that P does not scale as the size of the problem
remains small. The total cost of repeating the inner-loop will
be O(P(3M (K + 1) + K?)). Another extra computational
cost of FNNOMP is in the sorting of the coefficients, which
is O(N log(P)) in the worst case for finding sorted P largest
coefficients. As we need to sort the coefficients in each
iteration, the total cost will be O(K N log(P)). The inversion
of matrix R, which is a necessary to find x at the end of
algorithm [10], can be avoided using an iterative update of
R

If we calculate the computational cost of each step of the
two algorithms, we can derive Table II. The total cost of
two algorithms, after ignoring some low-complexity terms, are
presented in the last row of this table. As it can be seen, the
complexity of the CNNOP is of order five when K is large
and comparable with M. In comparison, FNNOMP has a term
which depends on P. While P is small, the computational
complexity of FNNOMP is of order three. This shows that
FNNOMP is more favourable for the large scale problems
with medium to large K’s.

The conclusion of this part relies on the fact that L is scaling
with the order of K and P is not scaling directly with the



CNNOMP FNNOMP
2: MN + N 23: MN + N + Nlog(N)
5: LMk? 8 M(k+1)+k?+2k+2
6: Mk 18: K2
Total: MNK + LMK?3 | Total: KN(M + 1) + KN log(P) + PMK(K + 1) + PK> + K2

TABLE 11
COMPUTATIONAL COMPLEXITY OF DIFFERENT IMPLEMENTATIONS OF NNOMP. THE BEGINNING NUMBERS ARE THE CORRESPONDING LINES IN
ALGORITHMS 1 AND 2

Average Exact Recovery
T T T

1A A A A
A
8 A +  Canonical NNOMP, M = 64
0.8 A O Non-Negativity Aware OMP, M = 64 H
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Fig. 2. Exact recovery (top panel) and computation time (botom panel).
N =256 and M = 64 & 128 are fixed while sparsity K is changing.

dimension of the problem. Although this is a hypothesis, we
next show that it seems to be true in practice, based on our
observations.

IV. SIMULATIONS

In this section, we investigate the computational costs and
the algorithm outputs of the CNNOMP and FNNOMP on a
single core of an Intel core 2.6 GHz processor. In the first
experiment, we randomly generated ® with 256 atoms and
64 or 128 rows using i.i.d. Gaussian random variables. With
different sparsity levels and using the proposed CNNOMP and
FNNOMP, we repeated the simulations 1000 times. The exact
recovery and computational time are shown in Figure 2. While
the exact recovery is very similar, the proposed method is
significantly faster for large K’s. Different increasing rates
of computational cost is due to different dependencies on
K, which is presented in Table II. The dominant term of
the complexity of CNNOMP is LM K3, which changes like
K*, when L ~ K. On the other hand, the dominant term
of FNNOMP behaves like O(K?), for small P’s. The other
important observation in Figure 2 is the significant difference
between CNNOMP and FNNOMP in computational time, for
a fixed K, in favour of the proposed technique.

In the second experiment, we used the same method to
generate the dictionary, but we fixed N = 256, to investigate
the computation time as a function of M. Here K = 24
or 32 and M is between 32 and 196. The computational

Computational Time (Sec)
T

107 T T T T T T

+  Canonical NNOMP, K = 24
©  Non-Negativity Aware OMP, K = 24
*  Canonical NNOMP, K = 32

A Non-Negativity Aware OMP, K = 32
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Fig. 3. Computation time for the fixed N = 256 and K = 24 & 32.
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Fig. 4. Computation time for the fixed M = 128 and K = 64 & 96.

time is plotted in Figure 3. The computational time is slowly
increasing with M, as its order in the total complexity is
one, see Table II. However, the increase rate is higher for
the CNNOMP.

In the last experiment, we fixed M = 128 and changed N
from 128 to 512 and repeated the simulations as before for
1000 times. The sparsity was selected to be 64 or 96, and
the results are shown in Figure 4. The computational cost is
increasing very slowly by increasing N in FNNOMP, while
it is almost constant for CNNOMP. This difference seems to
come from the fact that FNNOMP has the term N log(P), in
contrast with NV in CNNOMP. Since the computational time
of CNNOMP is much higher than FNNOMP, CNNOMP will
be competitive only for very large N’s.

V. CONCLUSION

We presented a new greedy technique based on OMP,
suitable for non-negative sparse representation, which is much
faster than the state of the art algorithm. The new algorithm has
a slightly different atom selection procedure, which guarantees
the non-negativity of the signal approximations. Although the
selection step is more involved, the overall algorithm has a
much faster implementation. The reason is that with the new
selection procedure, we can use fast QR implementation of the
OMP. The computational complexity of two NNOMP’s were
derived and the differences were demonstrated.
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