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Abstract—One of important classes of sparse signals is the non-
negative sparse signals. Canonical greedy techniques have been modified
to incorporate the non-negativity of the representations. One of such
modification has been proposed for Orthogonal Matching Pursuit (OMP),
where chooses positive coefficients first and uses a non-negative least
square as a replacement for the orthogonal projection onto the selected
support, at each iteration of the algorithm, which is computationally
expensive. We here present a very different modification to the canonical
OMP implementation, which truly incorporate the non-negativity of the
coefficients. We also present a novel fast implementation of the Non-
Negative OMP (NNOMP) which is based on the QR decomposition. As
a result we show that we may receive an acceleration of a factor of up
to ten in a reasonable size problem with the new method1.

I. INTRODUCTION

Let y ∈ Rm be a signal having the sparse representation using
a normalised linear generative model Φ ∈ Rm×n, i.e. dictionary,
where y = Φx and x is a sparse vector. Orthogonal Matching
Pursuit gradually adds one element of the dictionary, called an atom,
to the selected non-zero set and find the best possible representa-
tion of y using selected atoms, i.e. orthogonal projection. When
the signal of interest has a sparse and positive representation, i.e.
‖x‖0 ≤ k, x ∈ Rn+, we like to incorporate the extra information and
adapt OMP to the new setting. This adaptation has been proposed
in [1] with two modifications: a) only selecting the atoms with
positive correlation with the residual of the signal in that iteration,
i.e. i∗ = argminiφ

T
i r[t] where r[t−1] is the orthogonal component

of y to the span of currently selected atoms, and φi is the ith
atom, b) using Non-Negative Least Square (NNLS) representation
within selected atoms. The latter step is indeed computationally very
expensive for large k’s. As we have a non-negativity constraint on the
representation, we may find that the selected atom in each iteration
forces the coefficients of some already selected atoms to be zero,
which provides less energy reduction in each iteration of algorithm
and reduces the efficiency.

II. NON-NEGATIVE OMP
Let Φk = ΨkRk be the QR factorisation of selected k atoms

of dictionary Φ, where Ψk is a column orthonormal and Rk is an
upper-triangle matrix. With some abuse of notation, we assume that
in iteration k, Φk is sorted based on the iteration number and φi,
for 1 ≤ i ≤ k, is the selected atom in ith iteration. In each iteration
of NNOMP, we choose the atom which is positive and maximises
ΦTy. In the first iteration, we do not need any orthogonalisation and
we have φ1 = ψ1 and R = [1]. In the 1 ≤ kth iteration, let the best
approximation of y, using Φk, be

Pk
i=1 xiφi =

Pk
i=1 ziψi. In the

k + 1 iteration, we have,
k+1X
i=1

ziψi =

kX
i=1

ziψi + zk+1ψk+1

=

kX
i=1

xiφi + zk+1ψk+1

1This work was supported by the EPSRC grant EP/K014277/1 and the
MOD University Defence Research Collaboration in Signal Processing.
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Fig. 1. Exact Recovery and Computation Time.

As ψk+1 lives in the span of non-redundant set {φj}j∈[1,k+1],
ψk+1 =

Pk+1
j=1 γjφj for some unique γj’s. We can then have,

k+1X
i=1

ziψi =

kX
i=1

xiφi +

k+1X
j=1

zk+1γjφj

=

kX
i=1

(xi + zk+1γi)φi + zk+1γk+1φk+1.

As zk+1γk+1 is always positive, we only need to assure that xi +
zk+1γi ≥ 0 or

zk ≤ min
i,γi<0

˛̨̨̨
xi
γi

˛̨̨̨
. (1)

In the fast implementation of OMP using QR factorisation [2], we
only need to update zi at each iteration. To assure that xi’s are all
non-negative, zi’s should comply the condition of (1). We then choose
the atom that the corresponding zk+1, or shrunk by uper-bound of
(1), has the largest value. It is worth mentioning that Rk, R−1

k and
γ can be calculated very efficiently, using iterative reconstruction
techniques.

III. SIMULATIONS

To demonstrate the performance, we randomly generated Φ with
256 atoms and 64 or 128 rows using i.i.d. Gaussian noise, followed
by column normalisation. With different sparsity and using proposed
NNOMP and canonical NNOMP, we repeated the simulations 100
times. The exact recovery and computational time is shown in Figure
1. While the exact recovery is very similar, proposed method is
significantly faster for large k’s.
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