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Analysis Framework : An Introduction

A low dimensional signal model.

A special type of the union of subspaces
signal model.

Has many applications in, for example,
denoising, compressed sensing and inverse
problems to improve the overall performance.

Analysis Model

The signal y follows the model, if there exists a (linear) analysis
operator Ω ∈ Rn×m, n ≥ m that sparsifies y,

z = Ωy.

‖z‖0 = n − p, where p > 0 is called the co-sparsity of y.
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Analysis Operator Learning (AOL) Formulation

A set of samples Y = [y1 . . . yi . . . yL] is given.

The goal is to find a suitable analysis operator Ω
such that ‖ΩY‖0 is small.

The objective is non-smooth ⇒ not suitable for
optimisation with variational techniques.

A relaxation is to select the sum of absolute
values operator, i.e. ‖ · ‖1 =

∑
i j |{·}i j |.

Formulation

The learned operator can be found by minimising the sparsity
promoting operator,

min
Ω
‖ΩY‖1 s. t. Ω ∈ C

where C is a constraint, to exclude the trivial solutions, e.g. Ω = 0.
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Insufficient Constraints

Row norm constraints

∀i , ‖ωi‖2 = c

Rank one Ω1 is found by
repeating the best
(almost) orthogonal
direction ω∗ to columns
of Y.

Row norm + full rank
constraints

A randomly perturbed Ω
from Ω1 , i.e. row
normalised Ω1 + N, has a
full rank and it is still not
suitable.

Tight frame constraints

It resolves the issue in a
complete setting. In the
overcomplete cases, it
includes zero-padded
orthobases.
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Proposed Constraint

Uniform Normalised Tight Frame (UNTF):

Definition: C = {Ω ∈ Rn×m : ΩT Ω = I & ∀i ‖ωi‖2 =
√

m
n }

Pros and Cons:

Zero-padded orthobases are not UNTF.

There exist some practical methods to project onto the TF and the
UN manifolds. However, there is no analytical way to find the
projection onto the UNTF!

There is no easy way to find the global optimum, using C as the
constraint.
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Projected Subgradient Algorithm for AOL

Motivation

Minimisation of a convex objective subject to the intersection of
two manifolds ⇒ a variant of projected subgradient algorithm is a
good candidate.

Projected Subgradient Type Algorithm for AOL

1: initialisation: k = 1, Kmax , Ω[0] = 0, Ω[1] = Ωin, γ, ε� 1
2: while ε ≤ ‖Ω[k] − Ω[k−1]‖F and k ≤ Kmax do
3: ΩG = ∂f (Ω[k])
4: Ω[k+1] = PUN

{
PTF

{
Ω[k] − γΩG

}}
5: k = k + 1
6: end while
7: output: Ωout = Ω[k−1].
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AOL for the Piecewise Constant Images

Finding an Ω for the image
patches of size 8× 8.

A 512× 512 Shepp-Logan
phantom image was used
as the training image.

N = 16384 image patches
was randomly chosen from
the training image.

A pseudo-random UNTF
operator Ω0 ∈ R128×64 was
used as the initial operator
and the algorithm iterated
100,000 times!
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AOL for the Piecewise Constant Images

Original Operator Learned Operator
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Issues with the Projected Subgradinet
Algorithm: Some Proposed Relaxations

No analytical way to project onto UNTF → no convergence proof.

Projection onto TF needs a full SVD calculation → expensive
implementation and non-scalable algorithm.

`1 term is not differentiable → slow convergence of the projected
subgradient algorithm.

Relaxed AOL Formulation

1 Relaxing the objective: using a convex, but differentiable sparsity
constraint g(ΩY), where g is an entrywise function defined as,

g(x) = |x | − s ln(1 + |x |/s), s ∈ R+

2 Relaxing the constraint: using quartic constraints
‖ΩT Ω− I‖2

F ≤ εTF and ‖ωT
i ωi − m

n ‖
2
2 ≤ εUN , ∀i ∈ [1, n]
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Relaxed Analysis Operator Learning

Relaxed Analysis Operator Learing Formulation

An unconstrained objective is generate by using two Lagrange
multipliers γ and λ:

f (Ω) = g(ΩY) +
γ

4
‖ΩT Ω− I‖2

F +
λ

4

∑
i

{
‖ωT

i ωi −
m

n
‖2

2

}
.

f is differentiable and it is also convex, if we restrict its domain to
Cc = {Ω : ΩT Ω− I � 0, ∀i , (ωT

i ωi − m
n ) ≥ 0}.

Gradient Descent Algorithm for AOL

A variable step-size gradient descent, with line search, can be used
to minimise f (Ω), where the gradient of f can easily be found by:

∇f =

[
Zi ,j

s + |Zi ,j |

]
i ,j

YT + γ
(

ΩΩT − I
)

Ω + λ
[
ωi

(
ωT

i ωi −
m

n

)]T
i

Z := ΩY
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Noise Aware Analysis Operator Learning

Approximately Cosparse Exemplars

Training data Y is approximately
cosparse,Y = Yc + N, where N is
noise or model mismatch and Yc is
cosparse.

The goal is to find an operator Ω,
such that ΩYc has many zeros.

The issue is that we do not know Yc

precisely! A solution is to somehow
approximate it.

This is indeed very similar to the
dictionary learning problem, where
we do not know the sparse coefficients.

12 / 19

Constrained Overcomplete Analysis Operator Learning for Cosparse Signal Modelling



Noise Aware Analysis Operator Learning:
Formulation and Algorithm

Noise Aware Analysis Operator Learning

min
Ω,bY ‖ΩŶ‖1 +

θ

2
‖Ŷ − Y‖2

F s. t. Ω ∈ C.

Solving by alternating minimisation technique.

Optimisation based on Ω: similar to noise-less AOL.

Optimisation based on Ŷ: a convex program. → Douglas-Rachford
Splitting (DRS) technique was used to efficiently solve the program.

Algorithm usually converges after a few number of alternating
minimisations.

For the optimisation base on Ŷ, the `1 penalty can be relaxed,
similar to the operator update step, and the new convex program
can be solved using a gradient descent algorithm with a line search.
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An Operator for the Face Images: Setting

Learning an Ω for the
image face patches from
the Yale face database.

L = 16384, 8× 8 image
patches were randomly
selected from different
faces.

14 / 19

Constrained Overcomplete Analysis Operator Learning for Cosparse Signal Modelling



An Operator for Face Images:
Cosparsity Comparison

The analysis coefficients z = Ωy and cosparsities were calculated,
using Ω0, ΩAOL and ΩNAAOL.
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Cosparsity with operator learned with AOL

Cosparsity with operator learned with NAAOL

15 / 19

Constrained Overcomplete Analysis Operator Learning for Cosparse Signal Modelling



Learned Operator

Original Operator Learned Operator
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Face Images Denoising:
TV v.s. Learned Operator

TV operator for comparison.

Two different regularisation
parameters, λ = 0.3 & 0.1 .
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Conclusion and Future Work

Conclusion:

The constrained analysis operator learning is a useful technique to
find a suitable analysis operator.

The proposed constraint can be relaxed to reduce the complexity of
the optimisation algorithm, while including some approximately
UNTF operators.

The simulation results emphasis on the fact that we should use the
correct analysis operator, i.e. TV or oscillatory operators.

The convergence of the relaxed AOL is guaranteed, as its objective
has a bounded curvature and its sublevel set is conpact.

Future Work:

I Investigating the local identifiability of operators in this framework.

I More investigations on the structures of the learned operators.
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Thanks for your attention.
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