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ABSTRACT

Sparse signal models approximate signals using a small number of
elements from a large set of vectors, called a dictionary. The suc-
cess of such methods relies on the dictionary fitting the signal struc-
ture. Therefore, the dictionary has to be designed to fit the signal
class of interest. This paper uses a general formulation that allows
the dictionary to be learned form the data with some a priori in-
formation about the dictionary. In this formulation a universal cost
function is proposed and practical algorithms are presented to min-
imize this cost under different constraints on the dictionary. The
proposed methods are compared with previous approaches using
synthetic and real data. Simulations highlight the advantages of the
proposed methods over other currently available dictionary learning
strategies.

1. INTRODUCTION

Signals can be approximated using overcomplete representations
with more elementary functions (atoms) than the dimension of the
signal. These representations are not unique for a given set of atoms.
A sparse representation is an overcomplete representation that uses
the minimal number of non-zero coefficients. For example, sparse
representations have been used for low bitrate coding, denoising

and source separation. Let y ∈ R
d and x ∈ R

N (where d < N) be

the input and the coefficient vectors and let the matrix D ∈ R
d×N

be the dictionary. One form of sparse approximation is to solve an
unconstrained optimization problem,

min
x

Φ(x) ; Φ(x) = ||y−Dx||2 +λ ||x||0 (1)

where ||x||0 and λ are the sparsity measure (which counts the num-
ber of non-zero coefficients) and a constant multiplier respectively.
This problem is NP-hard in general. Therefore various relaxed spar-
sity measures have been presented to make the problem tractable.
A commonly used class of measures are ||x||

p
p =

P

i |xi|
p with

0 < p≤ 1.
When the generative model for the signals is unknown, appro-

priate dictionary learning algorithms can be used to adaptively find
better dictionaries for a set of training samples. We are thus search-
ing for a set of elementary functions that allow the set of training
signals to be represented sparsely and with a small approximation
error.

In this paper we consider the dictionary learning problem as a
constrained optimization problem with two sets of parameters, co-
efficient matrix and dictionary. The constraints are generalizations
of those in [1]. The proposed constrained optimization problem
is converted into an unconstrained optimization problem using La-
grangian multipliers. We then present reasonably fast methods to
update the dictionary. A comparison between the proposed method
and other dictionary learning methods is presented.

2. DICTIONARY LEARNINGMETHODS

In dictionary learning, one often starts with some initial dictionary
and finds sparse approximations of the set of training signals whilst
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keeping the dictionary fixed. This is followed by a second step in
which the sparse coefficients are kept fixed and the dictionary is
optimized. This algorithm runs for a specific number of alternating
optimizations or until a specific approximation error is reached. The
proposed method is based on such an alternating optimization (or
block-relaxed optimization) method with some advantages over the
current methods in the condition and speed of convergence.

If the set of training samples is {y(i) : 1 ≤ i ≤ L}, where L
is the number of training vectors, then sparse approximations are
often found (for all i : 1≤ i≤ L ) by,

min
x(i)

Φi(x
(i)) ; Φi(x) = ||y(i)−Dx||2 +λ ||x||

p
p (2)

An alternative to minimizing (2) individually on each vector is to

find a joint sparse approximation of the matrixY= [y(1) y(2) ... y(L)]
by employing a sparsity measure in matrix form. The sparse matrix
approximation problem can be formulated as,

min
X

Φ(X) ; Φ(X) = ||Y−DX||2F +λJp,p(X), (3)

where Jp,q(X) is defined as ([2]),

Jp,q(X) =
X

i∈I

[
X

j∈J

|xi j|
q]p/q. (4)

||X||F = J
1/2

2,2(X) would be the Frobenius-norm. When p = q all

elements in X are treated equally.
The second step in dictionary learning is the optimization of

the dictionary based on the current sparse approximation. The cost
function in (3) can be thought of as an objective function with two
parameters,

Φ(D,X) = ||Y−DX||2F +λJp,p(X) (5)

Without additional constraints on the dictionary, minimizing the
above objective function is an ill-posed problem. An obvious so-
lution is D → ∞,X → 0 s.t. DX = Y. By constraining the norm
of D we can exclude these undesired solutions. Dictionaries with
fixed column-norms or fixed Frobenius-norm have been used in dif-
ferent papers (for example [3] and [1]). We present the more general
admissible sets assuming “’bounded column-norm” and “bounded
Frobenius-norm”.

In the Method of Optimal Directions (MOD) [3] the best D is
found by using the pseudo inverse of X followed by re-normalizing
each atom. The Maximum Likelihood Dictionary Learning algo-
rithm (ML-DL), which is presented in [4], is similar to MOD but
uses gradient optimization. If the update is done iteratively, we
find the best possible dictionary update without any constraint (sim-
ilar to MOD). This update is followed by normalizing atoms based
on the variance of the corresponding coefficients. The dictionary
normalization step in these methods may increase total approxima-
tion error. The Maximum a Posteriori dictionary learning algorithm
(MAP-DL) [1] is based on the assumption that ’a priori’ informa-
tion is available about the dictionary. By the use of an iterative



method, if the algorithm converges, it finds a dictionary consistent
with this a priori information [1]. When a fixed column-norm con-
straint is used, the algorithm updates atom by atom, making the
method too slow to be used for many real signals [5].

The K-SVD method presented in [5] is fundamentally different
from these methods. In the dictionary update step, the supports of
the coefficient vectors (the positions of the non-zero coefficients)
is fixed and an update of each atom is found as the best normal-
ized elementary function that matches the errors (calculated after
representing the signals with all atoms except the currently selected
atom).

The dictionary learning approach proposed in this paper has
several similarities with the formulation used in MAP-DL. How-
ever, our approach is based on a joint cost function for both, the
sparse approximation and the dictionary update and uses a new class
of constraints on the desired dictionaries. Furthermore, the algo-
rithms presented to solve the problem are different and are proven
to converge. Because the proposed cost functions are not convex,
using gradient based methods to update the dictionary will not in
general find the global optimum and, like the other methods men-
tioned above, the algorithms presented in this paper are only guar-
anteed to find a local minimum.

3. REGULARIZED DICTIONARY LEARNING (RDL)

In this section we consider the dictionary learning problem as a con-
strained optimization problem.

min
D,X

Φ(D,X) s.t. D ∈ D ; Φ(D,X) = ||Y−DX||2F +λJp,p(X) (6)

where D is some admissible set. In an iterative two-step optimiza-
tion scheme, we find the optimum X with fixed D in one of the
steps. In this paper we use iterative thresholding (IT) [6] for this
optimization. In this algorithm a convex function is added to the
objective function to decouple the optimization of the xi j . Then the
convex function is updated based on the current solution and the al-
gorithm continues with the new objective function. The objective
function in (6) and the added convex function have matrix valued
parameters leading to a generalization for the IT method.

In every other step of the dictionary learning algorithm we up-
date the dictionary. As noted in [1], two typical constraints are the
unit Frobenius-norm and the unit column-norm constraints, both of
which lead to non-convex solution sets. In addition to these con-
straints, the algorithms proposed in this paper can also be used to
solve (6) if bounded norm constraints (defined later) are used. With
these, the algorithms are guaranteed to find the global optimum
within the dictionary update step. Note that (5) is a convex func-
tion of D (for fixed X) and of X (for fixed D), but it is not convex as
a function of both, X and D, so that the alternating optimization of
(3) is not guaranteed to find a global optimum.

Note that if the sparsity measure in the sparse approximation
step penalizes coefficients based on their magnitudes (for example
lp : 0 < p ≤ 1), it is easy to show that the fixed points of the algo-
rithm are on the boundary of the convex sets.

3.1 Constrained Frobenius-Norm Dictionaries

In this section we derive an algorithm for the case in which we con-
strain the Frobenius-norm of D. An advantage of using a constraint
on the Frobenius-norm is that the dictionary size can be reduced
during dictionary learning by pruning out atoms whose norm be-
comes small. Another advantage is that the learned dictionary will
have atoms with different norms as used in the weighted-pursuit
framework [7]. Atoms with large norm then have more chance of
appearing in the approximation. It has been shown that the aver-
age performance of the sparse approximation increases when the
weights are chosen correctly for the class of signals under study
[7].

The admissible set for the bounded Frobenius-Norm dictionar-
ies is,

D = {Dd×N : ||D||F ≤ c
1/2
F } (7)

where cF is a constant. With the help of a Lagrangian multiplier γ
we turn this into an unconstrained optimization problem,

min
D

Φγ (D,X), (8)

where Φγ (D,X) is defined as,

Φγ (D,X) = ||Y−DX||2F +λJp,p(X)+ γ(||D||2F −cF). (9)

The solution to the above minimization problem is a global min-
imum if the solution satisfies the K.K.T conditions [8, Theorem
28.1]. The admissible set is convex, so any minimum of Φγ (D,X)

is an optimal solution if γ(||D||2F−cF) = 0. Therefore if ||D||2F 6= cF
then γ must be zero. The objective function is differentiable in D.
Therefore its minimum is a point with zero gradient. For fixed X,

dΦγ (D,X) = d tr{XTDTDX−XTDTY−YTDX

+YTY}+ γ . d tr{DTD}

= (2XXTDT −2XYT +2γDT )dD

⇒
d

dD
Φγ (D,X) = 2XXTDT −2XYT +2γDT = 0

⇒ D = YXT (XXT + γI)−1 (10)

Φγ (D,X) is a non-negative convex function of D and this solution
is minimal. To find the appropriate γ satisfying the K.K.T condi-
tion, we note that Φγ (D,X) is a continuous function of γ (in the
regions in which (XXT + γI) is not singular). Therefore if D as cal-
culated by (10) and with γ = 0 is admissible, this D is the optimum
solution. If (10) does not give an admissible solution, we can use a

line-search method to find a γ 6= 0 such that ||D||F = c
1/2
F (by chang-

ing γ in the direction which reduces |||D||F − c
1/2
F |). Interestingly,

MOD uses D = YXT (XXT )−1, whilst our update uses a regularized
pseudo inverse.

If we use an equality in the definition of (7) to get the fixed
Frobenius-norm constraint, the set becomes non-convex so that we
might only find a local minimum, in which case γ could become
negative.

3.2 Constrained Column-Norm Dictionaries

The admissible set for the bounded column-norm dictionary is de-
fined as,

D = {Dd×N : ||di||2 ≤ c
1/2
C }, (11)

where di is the ith column of the dictionary and cC is a constant.
This admissible set is again a convex set. However, now we need
N (number of columns in D) Lagrangian multipliers (equal to the
number of constraints) and the unconstrained optimization turns to,

min
D

ΦΓ(D,X), (12)

where ΦΓ(D,X) is defined as,

ΦΓ(D,X) = ||Y−DX||2F +λJp,p(X)+
N

X

i=1

γi(d
T

i di−cC) (13)

With this formulation, the K.K.T conditions are,

∀i : 1≤ i≤ N, γi(d
T

i di−cC) = 0 . (14)

This means that for each i if dT

i di is not equal to cC then γi should
be zero. (12) can be rewritten as

ΦΓ(D,X) = ||Y−DX||2F +λJp,p(X)+ tr{Γ(DTD−cCI)}, (15)



where Γ is a diagonal matrix with the γis as the diagonal elements.
If we use a similar method as before we get an optimum at,

D = YXT (XXT +Γ)−1 (16)

Even though the minimum seems to be similar to (10), finding Γ is
now more difficult as we can no longer use a line search.

Instead of optimizing the original objective function (15) di-
rectly we can use an iterative method. By adding a convex function
of D to (15) we get the surrogate function,

ΦS
Γ
(D,B,X) = ΦΓ(D,X)+cs||D−B||2F −||DX−BX||2F (17)

where B is a d×N matrix that is set to the previous solution of D
(D[n−1]) in each iteration. cs is a constant such that ||X

TX||2 < cs. To
minimize the surrogate function we set the gradient to zero.

d

dD
ΦS

Γ
(D,D[n−1],X) = −2XYT +2XXTD[n−1]T +2csD

T

−2csD
[n−1]T +2ΓDT = 0

⇒ D[n] = (YXT +D[n−1](csI−XXT ))(Γ+csI)
−1 (18)

All γis are non-negative and (Γ+ csI) is a diagonal matrix. There-
fore (Γ + csI) is invertible. In equation (18) by changing γi we
multiply the corresponding column of YXT +D[n−1](csI−XXT ) by
a scalar and we can regulate the norm of each column in D by
the corresponding γi. We start with all γi = 0 and for any col-
umn of D for which the norm is more than one, we find the small-
est value for γi that normalizes that column. In other words, we
find D♯ = YXT +D[n−1](csI−XXT ) and then project D♯ onto the

admissible set to find D[n]. The algorithm starts with the dictio-
nary D[0] = Di and iteratively reduces the surrogate objective func-
tion. We can run the algorithm for a specific number of iterations
or stop based on the distance between the dictionaries in two con-
secutive iterations (||D[n] −D[n−1]||F < ξ ), for a small positive con-
stant ξ ). This iterative method can be shown to converge to the
minimum of the original objective function (15) (X fixed). Alterna-
tively, we can again set the constraint set to have fixed column-norm

(D = {Dd×N : ||di||2 = c
1/2
C }). Here the algorithm may find a local

minimum and some of the γi might become negative.

4. SIMULATIONS

We evaluate the proposed methods with synthetic and real data. Us-
ing synthetic data with random dictionaries helps us to examine the
ability of the proposed methods to recover dictionaries exactly (to
within an acceptable squared error). We generated the synthetic
data and dictionaries as proposed in [1] and [5]. To evaluate the
performance on real data, we chose an audio signal, which has been
shown to have some sparse structure. We then used the learned
dictionary for audio coding and show some improvements in the
Rate-Distortion performance.

4.1 Synthetic Data

A 20× 40 matrix D was generated by normalizing a matrix with
i.i.d. uniform random entries. The number of non-zero elements
was selected between 3 and 7 to generate different sparse coefficient
vectors. The locations of the non-zero coefficients were selected
uniformly at random. For the unit column-norm dictionary learning,
we generated 1280 training samples where the absolute values of
the non-zero coefficients were selected uniformly between 0.2 and
1. Iterative Thresholding (IT) [6] was used to optimize (3) using
the ℓ1 measure. This was followed by orthogonal projection onto
the selected sub-spaces (to find the best representation in that sub-
space). The stopping criteria for IT was the distance between two

consecutive iterations (δ = 3× 10−4) and λ was set to 0.4 . The
termination conditions for the iterative dictionary learning methods

(RDL and MAP-DL) was set to (||D[n] −D[n−1]||F < 10−7).
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Figure 1: Exact recovery with fixed column-norms dictionary learn-
ing.
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Figure 2: Computation cost of the fixed column-norm dictionary
learnings algorithms.

We started from a normalized random D and used 1000 itera-
tions. The learning parameter (γ) in MAP-DL was selected as de-

scribed in [1]. We down-scaled γ by a factor of 2− j ( j > 1) when
the algorithm was diverging. To have a fair comparison, we did
the simulations for 5 different trials. If the squared error between
a learned and true dictionary element was below 0.01, it was clas-
sified as correctly identified. The average percentages and standard
deviations are shown in Figure 1. It can be seen that in all cases,
RDL and K-SVD recovered nearly the same number of atoms and
more than the other methods (although for the signals with less than
6 non-zero coefficients, RDL recovered all desired atoms, perfor-
mance of K-SVD was very close to it). The MAP-DL algorithm did
not perform well in this simulation. We guess the reason for this
is slow convergence of the approach and the use of more iterations
might improve the performance.

In Fig.2 we compare the computation time of the algorithms
for the above simulations. Simulations ran on the Intel Xeon 2.66
GHz dual-core processor machines and both cores were used by
Matlab. In this graph the total execution time of the algorithms
(sparse approximations plus dictionary updates for 1000 iterations)
is shown. MOD was fastest followed by our RDL.

We have a larger admissible set when fixing the Frobenius-norm
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Figure 3: Exact recovery with fixed Frobenius-norm dictionary
learning. 1: Desired dictionary had fixed Frobenius-norm. 2: De-
sired dictionary had fixed column-norms.
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Figure 4: Computation cost of the fixed Frobenius-norm dictionary
learning algorithms.

of the dictionary, which makes the problem of exact recovery more
complicated and we expect to have less exact recovery for the same
sparse signals. For this part we started with normalized random dic-
tionaries, normalized to have either fixed Frobenius-norm or fixed
column-norm.

The simulations were repeated for 5 trials and the averages and
standard deviations of the atom recovery are shown in the Fig. 3.
In these simulations RDL performed slightly better than MAP-DL.
The other observation in this figure is that when the desired dic-
tionaries have fixed column-norms, performance of the algorithms
increase but do not reach the performance observed when using
the more restricted (and appropriate) admissible set. Computation
times of the algorithms, on the machines described formerly, are
shown in the Fig.4. An interesting observation is the decrease in
the computation time of RDL for less sparse signals, when the al-
gorithm could barely recover the correct atoms.

Instead of constraining the dictionaries to have fixed norms, we
can use the bounded-norm constraints. To show the possible advan-
tage of these constraints, we repeated the simulations above. The
results achieved with these constraints are shown in Fig. 5 We here
did the simulations with and without orthogonal projections on the
selected spaces found by sparse approximation method. It can be
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Figure 5: l0 cost functions of the constrained Frobenius and col-
umn -norms dictionary learning algorithms respectively on top and
bottom plots.

seen that using bounded-norm admissible set improves performance
slightly when constraining the column-norm but it does not change
performance of the other method. These plots also show that the
orthogonal projection onto the selected spaces can improve overall
performances.

4.2 Dictionary Learning for Sparse Audio Representations

In this part we demonstrate the performance of the proposed dictio-
nary learning methods on real data. An audio sample of more than 8
hours was recorded from BBC radio 3, which plays mostly classical
music. The audio sample was summed to mono and down-sampled
by a factor of 4. From this 12kHz audio signal, we randomly took
4096 blocks of 256 samples each.

In the first experiment we used fixed column-norm and fixed
Frobenius-norm dictionary admissible sets. The set of dictionar-
ies with the column-norms equal to cC is a subset of a larger set of
fixed Frobenius-norm dictionaries, when cF = NcC. We chose unit
column-norm and fixed Frobenius-norm (cF = N) dictionary learn-
ing algorithms. We initialized the dictionary with a 2 times over-
complete random dictionary and used 1000 iterations of alternative
sparse approximation (using ℓ1) and dictionary updates. The cost
function against iteration, for two different values of λ , are shown
in the Fig. 6. This figure shows that the optimal fixed Frobenius-
norm dictionaries are better solutions for the objective functions.

As a second experiment we looked at an audio coding example.
We used the RDL method with the fixed Frobenius-norm constraint
to learn a dictionary based on a training set of 8192 blocks, each
256 samples long. The audio could be modeled using sinusoid, har-
monic and transient components. We chose a 2 times overcomplete
sinusoid dictionary (frequency oversampled DCT) as the initializa-
tion point and ran the simulations with different lambda values for
250 iterations. The number of appearances of each atom (λ = .006)
are sorted based on their ℓ2 norms and are shown in the Fig. 7. To
design an efficient encoder we only used atoms that were used fre-
quently in the representations and therefore shrunk the dictionary.
In this test we chose a threshold of 40 (out of 8192) as the selection
criteria. This dictionary was used to find the sparse approximations
of 4096 different random blocks, each of 256 samples, from the
recorded audio. We then coded the location (significant bit map)



0 100 200 300 400 500 600 700 800 900 1000
20

40

60

80

100

120

λ
 =

 .
0
0
5

l
1
 cost functions (approximation error + λ * l1 sparsity measure)

 

 

Fixed column−norm

Fixed Frobenius−norm

0 100 200 300 400 500 600 700 800 900 1000
5

10

15

20

25

Iterations

λ
 =

 .
0
0
1

Figure 6: ℓ1 cost functions for two different Lagrangian multipliers
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Figure 7: Number of appearances in the representations of the train-
ing samples (of size 8192).

and magnitude of the non-zero coefficients separately. In this paper
we used a uniform scalar quantizer with a double zero bin. We cal-
culated the entropy of the coefficients to approximate the required
coding cost. To encode the significant bit map, we assumed an i.i.d.
distribution for the location of the non-zero atoms. The same cod-
ing strategy was used to code the DCT coefficients of the same data.
The performance is compared in Fig. 8. The convex hull of the rate-
distortion performance calculated with different learned dictionar-
ies, each optimized for a different bit-rates, is shown in this figure.
Using the learned dictionaries is superior to using the DCT for the
range of bit-rates shown, but the advantage is more noticeable for
lower rates.

5. CONCLUSIONS

We have formulated the dictionary learning problem as a con-
strained minimization of a joint cost function. This allowed the
derivation of a stable algorithm for dictionary learning, which was
shown to perform well on several test data sets. The derived meth-
ods differ from most of the previously proposed approaches, such as
K-SVD and MAP-DL with unit column-norm a priori information,
which are based on atom-wise dictionary updates. The proposed
methods update the whole dictionary at once. The computation cost
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Figure 8: Estimated Rate-Distortion of the audio samples with
sparse approximation using learned dictionary and DCT.

of the algorithms were compared and it was found that the proposed
methods performed better than, or similar to other competitors. An-
other simulation showed that using a bounded norm constraint was
slightly better or at least as good as a fixed norm constraint. How-
ever, more simulations are needed. An alternative to the proposed
method, when the constraint set is convex, is iterative gradient pro-
jection. This method is similar to the method that was used in Sec-
tion 3.2 but with a different, and sometimes adaptive, cs. The over-
all performance comparison of these methods is the next step of this
project.
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